Foxboro Public Schools Grade 4 Standards	Examples:
I. Accurately adds multidigit whole numbers.	I 1 5 ones +7 ones $=12$ ones. Regroup 10 ones into 3,815 Iten and record that in the tens place. $+1,647$ Iten +4 tens, +1 (regrouped) ten $=6$ tens 8,652 hundreds +6 hundreds $=14$ hundreds. Regroup I hundreds into I thousand and record it in the thousands place. 3 thousands +1 thousand +1 (regrouped) thousand $=5$ thousands.
2. Accurately subtracts multi-digit whole numbers.	10 4 ones -7 ones requires us to open I ten. We $1 Q 14$ now have 0 tens left, but 14 ones. Now I can do $6,2 \times 4$ 14 ones -7 ones 7 ones. $-2,147$ 0 tens -4 tens requires us to open I hundred. 4,067 We now have I hundred left, but 10 tens. IO tens -4 tens $=6$ tens I hundred -1 hundred $=0$ hundreds 6 thousands -2 thousands $=4$ thousands
3. Accurately computes products of multi-digit whole numbers.	

6. Fluently multiplies up to 12×12 with automaticity
7. Fluently divides numbers up to 144 with automaticity

Student can orally state or write the product (answer to a multiplication equation) within 3 seconds.

Student can orally state or write the quotient (answer to a division equation) within 3 seconds

$$
\left.\frac{4}{8}+\frac{1}{8}=\frac{5}{8} \quad \right\rvert\, \frac{1}{3}-\frac{2}{3}=\frac{2}{3}
$$

8. Accurately adds and subtracts fractions, including those greater than one whole

(3) $\frac{1}{3}=\frac{4}{3}$
$\longrightarrow \frac{4}{3}-\frac{2}{3}=\frac{2}{3}$
9. Accurately generates equivalent fractions

$$
\frac{2}{3} \times \sqrt{\frac{4}{4}}=\frac{8}{12} \quad \frac{5}{10} \div \sqrt{\frac{5}{5}}=\frac{1}{2}
$$

IO. Accurately compares and orders fractions $\frac{4}{6}>\frac{2}{5}$
$3.25=3+0.20+0.05=$ "Three and twenty-five hundredths"
3.25 can be represented by 3 ones, 2 tenths, and 5 hundredths.
$1.8=1.80 \rightarrow$ because 80 (80 hundredths) $=.8$ (8 tenths)
$1.8>1.42 \rightarrow$ because both numbers have I one, but 1.8 has 8 tenths while 1.42 only has 4 tens.

$\left.\begin{array}{|ll|}\hline \begin{array}{l}\text { 15. Accurately solves real } \\ \text { world measurement } \\ \text { problems including area } \\ \text { and perimeter }\end{array} & \begin{array}{l}\text { Ex. Nadia is going to replace the wood around the front window of } \\ \text { her house. If the dimensions of the window are } 8 \text { feet by } 4 \text { feet, } \\ \text { how many feet of wood will Nadia need? }\end{array} \\ & \begin{array}{l}\text { Ex. Jason wants to buy an outdoor rug for his rectangular patio. If } \\ \text { his patio measures } 9 \text { ft by } 12 \text { feet and Jason wants the whole patio } \\ \text { covered, how many square feet must his rug cover? }\end{array} \\ & \begin{array}{l}\text { Ex. Ethan ran half of a mile in } 6 \text { minutes and } 14 \text { seconds. If he } \\ \text { continues with the same pace, how many seconds would it take } \\ \text { Ethan to run a full mile? }\end{array} \\ & \begin{array}{l}\text { Ex. Chalam paints pictures to sell at shows. She charges } \$ 8 \text { for a } \\ \text { large painting and } \$ 6 \text { for a small painting. This year she hopes to sell } \\ \text { 250 large paintings and } 125 \text { small paintings. If she reaches her goal, } \\ \text { how much money will she make in all? }\end{array} \\ & \begin{array}{l}\text { Ex. A chocolate factory made } 5,985 \text { candy bars. After inspection, } 90 \\ \text { of the bars were found to be defective and could not be shipped }\end{array} \\ \text { out. The factory will ship the good candy bars to } 9 \text { different }\end{array}\right\}$

