8盯 \ddagger

Uth GRade

Includes teaching pages, worksheets, journal pages, quizzes, assessments, word problems, and other activities.
© Rebecca Rojds
Credte.lécich. Sharb aliofined

Qbout this Product

I am so thrilled with how this product turned out! I originally started out to create some printables to use to supplement my math curriculum. However, this product slowly evolved into an entire fraction unit, complete with...
I. Teaching Pages
2. Worksheets
3. Journal Prompts
4. Word Problems
5. Quizzes and a Final Fractions Assessment
6. Plus, other activities!!

These fraction pages were designed to be used in my 4th grade classroom. However, they would work great in 3rd grade to challenge students and introduce them to more advanced skills. These pages can also be used as a review for 5th graders, to help prepare them for the 5 th grade fractions standards.

This product is divided into 6 parts and covers all of the Common Core fraction and decimal standards...

- Part I: Understanding Fractions (reviews 3rd grade standards)
- Part 2: Equivalent Fractions
- Part 3: Comparing Fractions
- Part 4: Adding \& Subtracting Fractions
- Part 5: Multiplying Fractions
- Part 6: Fractions \& Decimals

I hope you enjoy these fraction printables as much as I do! Please feel free to e-mail me with any questions that you have, at rjyoung23@gmail.com

PdRTI

 Uninderstdindinio

STAnDARDS: 3.MF. I and 3.nF 2 (review for 4th)

DURATIOn: 2 to 3 days

COnTENTS:

1. What is a Fraction?/Parts of a Fraction
2. Fractions are Everywhere (HW Assignment)
3. Ways to Represent a Fraction (4 pages)
4. name the Fraction (2 pages)
5. Color the Fraction (2 pages)
6. Fractions on a number Line (2 pages)
7. Pattern Block Fractions
8. Understanding Fractions Quiz
9. Fractions on a Ruler

TOTAL PAGES: 15

What is a fraction?


```
    -----------------------------
```


Denominator:
numerator:

Answer Key

What is a fraction?

A fraction represents a part of a

 _whole.Pdrts of afrdctionio

Denominator: Represents the number of equal parts in a whole.

Represents the part of the whole.

fractionis dre Everywhere

For homework tonight, think of all the different ways that fractions are used in real-life. Think of different examples and ask family members for ideas. Record your ideas in the space below. Create a list, draw pictures, or cut and paste examples you find.

W/dys to Represent a fraction

 Fraction BarsShade \qquad Parts

Number of
Equal Parts
How many parts is the whole divided into? \qquad
Represents \qquad Parts of the Whole

Represent
One Whole

Parts of a Group

Shade \qquad out of \qquad
Shade \qquad Parts

Answer Key

W/dys to Represent a fraction

Fraction Bars
Number Line

Number of
Equal Parts

Parts of a Group

Shade 3 out of 5

How many parts is the whole divided into? \qquad
Represents 3

whole divided in o?

Shade 3 Parts

W/dys to Represtent a frdetion
Fraction Bars
Number Line

Parts of a Group

Answer Key
W/dys to Represtent a frdetion
Fraction Bars
Number Line

W/dys to Represtent a frdetion
Fraction Bars
Number Line

Parts of a Group
Circle Model

Answer Key

W/dys to Represtent a frdetion

Fraction Bars
Number Line

Parts of a Group

Circle Model Circle should be divided into 8 equal parts, with 5 shaded.

W/dys to Represtent a frdetion
Fraction Bars
Number Line

Parts of a Group

Answer Key W/dys to Represtent a frdetion
Fraction Bars
Number Line

Parts of a Group

Answer Key
name: \qquad Date: \qquad Score:

Name the frdetion \#

name:
Date: \qquad Score:

Color the frdetion \#

Answer Key
name: \qquad Date: \qquad Score:
Color the fraction \#t

name: Date: \qquad Score:

Color the fraction \#2

Answer Key
name: \qquad Date: \qquad Score:

Color the frdetion \#2

name:
Date:
Score: \qquad
fraction

Answer Key

name: \qquad Date: Score: \qquad

fraction

name:
Date: \qquad Score: \qquad
fraction

1. Label $\frac{3}{5}$ on the number line. $;$. Label $\frac{5}{8}$ on the number line.

2. Label $\frac{3}{4}$ on the number line.
\qquad Date: \qquad Score: \qquad
fraction
3. Label $\frac{3}{5}$ on the number line. \quad. Label $\frac{5}{8}$ on the number line.

4. Label $\frac{3}{4}$ on the number line.
name: Date: \qquad Score: \qquad

Pattern Block fractions

\{Use pattern blocks to help find each of the fractions. $\}$

If ... Then...

If...

Then.

Answer Key
name:
Date: \qquad Score: \qquad

Pattern Block fractions

\{Use pattern blocks to help find each of the fractions. $\}$

If ... Then...

...

If...

name: Date: \qquad Score: \qquad

Understanding fractions Quiz

Label the fraction parts.

Represent $\frac{5}{6}$ using the following
Bar Model:

number Line:

Parts of a Group:

Find the fraction for each.

Then...

Answer Key

name:
 \qquad Date:
 \qquad Score:
 \qquad
 Understanding frcietions Quiz

Label the fraction parts.

Represent $\frac{5}{6}$ using the following.
Bar Model:

number Line:

Parts of a Group:

Find the fraction for each.

$$
\left[\hat{\frac{3}{8}}\right.
$$

name: Date: \qquad Score: \qquad

GRCGTions on a RuleR

Directions: For each ruler section, find A, B, and C.

$$
A:
$$

\qquad $B:$ \qquad C: \qquad

1	1	1	1	1	1	1	1	1				
			A		B			C				
			A									

$$
A:
$$

$B:$
C \qquad
6

$$
A:
$$

\qquad $B:$
C: \qquad
A: \qquad $B:$ \qquad C:

Answer Key
name: \qquad Date: \qquad Score: \qquad fractions on a Ruler

Directions: For each ruler section, find A, B, and C.

1

A. \qquad $1 \frac{1}{8}$ B: \qquad | 9/16 |
| :--- | C: \qquad 3

\qquad $B:$ \qquad c. 3116

6

PdRT2

equivalont

STAnDARDS: 4.nF.I, 4.nF. 5
DURATIOn: 2 to 3 days

COnTENTS:

1. Equivalent Fractions Chart
2. Equivalent Fraction Bars (2 pages)
3. Equivalent Fractions: Denominators of 10 \& 100 (2 pages)
4. Using Multiplication to Find Equivalent Fractions
5. Using Division to Find Equivalent Fractions
6. Simplest Form
7. True or False: Equivalent Fractions Journal Prompt
8. Find Equivalent Fractions Journal Prompt
q. Mixed Practice: Equivalent Fractions
9. Equivalent Fractions Quiz

TOTAL PAGES: 12

equivalont fractions Chdrt

$\left\{\begin{array}{l}\text { Label and color the fraction bars. Then use the fraction bars to list as } \\ \text { many equivalent fractions as you can for the fractions below. }\end{array}\right\}$

$\frac{1}{2}=$
$\frac{1}{3}=$
$\frac{1}{4}=$
$\left\{\begin{array}{l}\text { Label and color the fraction bars. Then use the fraction bars to list as } \\ \text { many equivalent fractions as you can for the fractions below. }\end{array}\right\}$

\qquad Date: \qquad Score: \qquad

Cquivalent fraction Bars \#

For each:
I. name the fraction for the first fraction bar.
2. Color the second fraction bar to represent an equivalent fraction. 3. Write the equivalent fraction.

Answer Key

name: \qquad Date: \qquad Score:

Cquivalent braction Bars \#

For each:
I. Name the fraction for the first fraction bar.
2. Color the second fraction bar to represent an equivalent fraction. 3. Write the equivalent fraction.

\qquad

\qquad Date: \qquad

equivalent fraction Bars \#2

For each:

1. name the fraction for the first fraction bar.
2. Color the second fraction bar to represent an equivalent fraction. 3. Write the equivalent fraction.

\square
$=$

Answer Key

name: \qquad Date: \qquad Score:

equivalent fraction Bars \#2

For each:
I. name the fraction for the first fraction bar.
2. Color the second fraction bar to represent an equivalent fraction. 3. Write the equivalent fraction.

$$
\frac{6}{10}=\frac{3}{5}
$$

$$
\frac{1}{1}=\frac{8}{8}
$$

$$
\frac{3}{12}=\frac{1}{4}
$$

Qquivalent fractions: Demonimators of in \& iDis

$\overline{10}$

Answer Key Cquivalent fractions: Demominators of id \& DiD

Equivalent fractions: Denominators of in \& iD D

 .0 To find equivalent fractions when the numerators $\cdot \ddots$..\{Find an equivalent fraction for each.\}

$$
\frac{3}{10}=\frac{}{100} \quad \frac{60}{100}=\frac{7}{10}=\frac{7}{10}=\frac{}{100}
$$

$$
\frac{90}{100}=\frac{\overline{10}}{10}=\frac{1}{10}=\frac{20}{100}=\overline{10}
$$

$$
\frac{4}{10}=\frac{}{100} \quad \frac{80}{100}=\frac{5}{10} \quad \frac{5}{10}=\frac{}{100}
$$

\{Find an equivalent fraction for each.\}

$$
\frac{3}{10}=\frac{30}{100} \quad \frac{60}{100}=\frac{6}{10} \quad \frac{7}{10}=\frac{70}{100}
$$

$$
\frac{90}{100}=\frac{9}{10} \quad \frac{1}{10}=\frac{10}{100} \quad \frac{20}{100}=\frac{2}{10}
$$

$$
\frac{4}{10}=\frac{40}{100}
$$

$\frac{80}{100}=\frac{8}{10}$
$\frac{5}{10}=\frac{50}{100}$

Using Mubtipliedtion to find Equivalent fractions

To find equivalent fractions, you can multiply a fraction by a fraction that is equivalent to 1 Multiply the numerators and the denominators $\because \quad$ to find an equivalent fraction

$$
\begin{array}{ll}
\frac{1}{2} \times \frac{2}{2}=\frac{2}{4} & \frac{1}{2} \times \frac{3}{3}=- \\
\frac{2}{2} \times \frac{4}{4} \times \frac{2}{2}=- & \frac{2}{3} \times \frac{4}{4}=- \\
\frac{1}{3} \times \frac{2}{5}=- \\
\frac{1}{4} \times \frac{2}{2}=- & \frac{1}{4} \times-=- \\
\frac{3}{4} \times-=- \\
\frac{3}{4} \times \frac{2}{2}=- & \frac{3}{4} \times-=- \\
\frac{3}{4} \times-=-
\end{array}
$$

Using Division to find Equivalent fractions

To find equivalent fractions, you can divide a fraction by a fraction that is equivalent to 1 . Divide the numerators and the denominators to find an equivalent fraction.

$$
\begin{array}{lll}
\frac{6}{12} \div \frac{2}{2}=\frac{3}{6} & \frac{6}{12} \div \frac{3}{3}=- & \frac{6}{12} \div \frac{6}{6}=- \\
\frac{6}{10} \div \frac{2}{2}=- & \frac{4}{12} \div \frac{4}{4}=- & \frac{5}{10} \div \frac{5}{5}=-
\end{array}
$$

$$
\frac{2}{8} \div \frac{2}{2}=-\quad \frac{8}{12 \div 2} \div \frac{2}{2}=-\quad \frac{3}{6} \div \frac{3}{3}=-
$$

$$
\frac{3}{12 \div \frac{3}{3}}=-\quad \frac{4}{8} \div \frac{4}{4}=-\quad \frac{4}{10} \div \frac{2}{2}=
$$

Using Division to find

 Equivalent fractions a fraction by a fraction that is equivalent to I . Divide the numerators and the denominators to find an equivalent fraction.$$
\begin{array}{lll}
\frac{6}{12} \div \frac{2}{2}=\frac{3}{6} & \frac{6}{12 \div 3} \div \frac{3}{4}=\frac{2}{12} \div \frac{6}{6}=\frac{1}{2} \\
\frac{6}{10} \div \frac{2}{2}=\frac{3}{5} & \frac{4}{12 \div \frac{4}{4}=\frac{1}{3}} \quad \frac{5}{10 \div \frac{5}{5}=\frac{1}{2}}
\end{array}
$$

$\frac{2}{8} \div \frac{2}{2}=\frac{1}{4}$
$\frac{8}{12} \div \frac{2}{2}=\frac{4}{6}$
$\frac{3}{6} \div \frac{3}{3}=\frac{1}{2}$
$\frac{3}{12} \div \frac{3}{3}=\frac{1}{4}$
$\frac{4}{8} \div \frac{4}{4}=\frac{1}{2}$
$\frac{4}{10} \div \frac{2}{2}=\frac{2}{5}$

Simplest forM

To find simplest form, divide the numerator and denominator by the greatest common factor. The greatest common factor is the greatest factor that the numerator and the denominator share.

Examples:

$$
\frac{9}{12} \div \frac{3}{3}=\frac{3}{4} \quad \frac{8}{10} \div \frac{2}{2}=\frac{4}{5}
$$

Directions: Find simplest form for each fraction.

$$
\begin{array}{c:c:c}
\frac{10}{12} \div-=- & \frac{6}{8} \div-=- & \frac{4}{10} \div-=- \\
& & \\
\frac{2}{8} \div-=- & \frac{4}{6} \div-=- & \frac{8}{12} \div-=-
\end{array}
$$

Answer Key

Simplest forM

To find simplest form, divide the numerator and denominator by the greatest common factor. The greatest common factor is the greatest factor that the numerator and the denominator share.

Examples:

$$
\frac{9}{12} \div \frac{3}{3}=\frac{3}{4} \quad \frac{8}{10} \div \frac{2}{2}=\frac{4}{5}
$$

Directions: Find simplest form for each fraction.

$$
\begin{array}{l:l}
\frac{10}{12} \div \frac{2}{2}=\frac{5}{6} & \frac{6}{8} \div \frac{2}{2}=\frac{3}{4} \\
\frac{4}{10} \div \frac{2}{2}=\frac{2}{5} \\
\frac{2}{8} \div \frac{2}{2}=\frac{1}{4} & \frac{4}{6} \div \frac{2}{2}=\frac{2}{3}
\end{array} \frac{8}{12} \div \frac{4}{4}=\frac{2}{3} .
$$

name: \qquad Date: \qquad Score: \qquad
Tr ut or false: equivalent fractions
Two-thirds is equal to four-sixths.

$$
\frac{2}{3}=\frac{4}{6} \quad \text { True or False? }
$$

$$
\left\{\begin{array}{c}
\text { Use models, pictures, and words in the space } \\
\text { provided below to prove your answer... }
\end{array}\right\}
$$

name: \qquad Date: Score: \qquad
Ir rue or false: equivalent fractions
Two-thirds is equal to four-sixths.

$$
\frac{2}{3}=\frac{4}{6}
$$

True or False?

$\left\{\begin{array}{c}\text { Use models, pictures, and words in the space } \\ \text { provided below to prove your answer... }\end{array}\right\}$

True.

Responses will vary.

name: \qquad Date: \qquad Score: \qquad
find Equivalent fractions
Find 2 or more equivalent fractions for...

$$
\begin{aligned}
& \frac{1}{4} \\
& \left\{\begin{array}{c}
\text { Use models, pictures, arithmetic, and words in } \\
\text { the space provided below to prove your answer... }
\end{array}\right\}
\end{aligned}
$$

name: \qquad

Mixed PraCtice:

equivalent fractions

$\{$ For each fraction given, list 3 equivalent fractions $\}$
$\frac{1}{3} \quad \frac{6}{8}$
\{Find an equivalent fraction for each.\}

$$
\frac{8}{10}=\overline{100} \quad \frac{50}{100}=\frac{\overline{10}}{10}=\overline{100}
$$

\{Find the simplest form of each fraction.\}

$$
\frac{6}{12}=-\quad \frac{2}{6}=-\quad \frac{4}{10}=
$$

$$
\frac{6}{8}=-\quad \frac{8}{10}=-\quad \frac{8}{12}=-
$$

Answer Key
name: \qquad Date: Score: \qquad

Mixed Prdeficto

 equivalent fraction is$\{$ For each fraction given, list T equivalent fractions $\}$, $\frac{1}{3}$
$\frac{6}{8}$
\{Find an equivalent fraction for each.\}

$$
\frac{8}{10}=\frac{80}{100} \quad \frac{50}{100}=\frac{5}{10} \quad \frac{9}{10}=\frac{90}{100}
$$

\{Find the simplest form of each fraction.\}

$$
\begin{array}{lll}
\frac{6}{12}=\frac{1}{2} & \frac{2}{6}=\frac{1}{3} & \frac{4}{10}=\frac{2}{5} \\
\frac{6}{8}=\frac{3}{4} & \frac{8}{10}=\frac{4}{5} & \frac{8}{12}=\frac{2}{3}
\end{array}
$$

name: \qquad

equivalent fractions Quill

\{Use the method of your choice to find an equivalent fraction for each.\}

$$
\begin{array}{llll}
\frac{1}{4}=\overline{8} & \frac{2}{3}=\overline{6} & \frac{1}{2}=\overline{8} & \frac{2}{5}=\overline{10} \\
\frac{1}{2}=\overline{6} & \frac{6}{8}=\overline{4} & 1=\overline{5} & \frac{3}{6}=\overline{12} \\
\frac{2}{8}=\overline{4} & \frac{3}{5}=\overline{10} & \frac{2}{4}=\overline{8} & \frac{1}{3}=\overline{6} \\
1=\overline{6} & \frac{3}{4}=\overline{12} & \frac{2}{4}=\overline{6} & \frac{4}{8}=\overline{2} \\
\frac{1}{2}=\overline{4} & \frac{2}{3}=\overline{12} & \frac{3}{4}=\overline{8} & \frac{3}{6}=\overline{10}
\end{array}
$$

\qquad

equivalent fractions Quill

\{Use the method of your choice to find an equivalent fraction for each.\}

$$
\frac{1}{4}=\frac{2}{8}
$$

$\frac{2}{3}=\frac{4}{6}$
$\frac{1}{2}=\frac{4}{8}$
$\frac{2}{5}=\frac{4}{10}$
$\frac{1}{2}=\frac{3}{6}$
$\frac{6}{8}=\frac{3}{4}$
$1=\frac{5}{5}$
$\frac{3}{6}=\frac{6}{12}$
$\frac{2}{8}=\frac{1}{4}$
$\frac{3}{5}=\frac{6}{10}$
$\frac{2}{4}=\frac{4}{8}$
$\frac{1}{3}=\frac{2}{6}$
$1=\frac{6}{6}$
$\frac{3}{4}=\frac{9}{12}$
$\frac{2}{4}=\frac{3}{6}$
$\frac{4}{8}=\frac{1}{2}$
$\frac{1}{2}=\frac{}{4}$
$\frac{2}{3}=\frac{}{12}$
$\frac{3}{4}=\frac{}{8}$
$\frac{3}{6}=\frac{}{10}$

Part 3

STAnDARDS: 4.NF. 2

DURATIOn: 2 to 4 days

CORTERTS:

1. Ways to Compare Fractions (3 pages)
2. Comparing with Fraction Bars (2 pages)
3. Comparing with number Lines (2 pages)
4. Comparing Fractions Chart
5. Comparing Fractions to One-Half
6. Finding Common Denominators
7. Cross Multiplication
8. Ordering Fractions (2 pages)
9. True or False: Comparing Fractions Journal Prompt
10. Comparing Fractions Quiz

TOTAL PAGES: 15

Fraction Bars
color the fraction bars to
represent each fraction...
Answer key
Color the fraction bars to
represent each fraction...

Fraction Bars

Color the fraction bars to represent each fraction...

Number Lines
Represent each fraction on the number lines...

Which fraction is closer to 0 ?
Which fraction is closer to 1?

How does each fraction compare to $\frac{1}{2}$?

- If the numerators are the same, then the greater the denominator, the smaller the parts.

If the denominators are the same, then the greater the numerator, the greater the fraction.

So, \qquad

Answer Key
Ways to Compare fractions

Fraction Bars

Color the fraction bars to represent each fraction...

Which is the greater fraction?

$\frac{\text { Use } 1 / 2 \text { as a }}{\text { Benchmark }}$ fraction? $\frac{3}{5}$

How does each fraction
compare to $\frac{1}{2}$?
$3 / 8$ is less than $1 / 2$ and $3 / 5$ is greater than $1 / 2$, so $3 / 8$ is less than 3/5.

Number Lines
Represent each fraction on the number lines...

Which fraction is closer to $0 ? \frac{3}{8}$ Which fraction is closer to 1? $\frac{3}{5}$

Look for Common

 Numerators or Denominators- If the numerators are the same, then the greater the denominator, the smaller the parts.
- If the denominators are the same, then the greater the numerator, the greater the fraction.
- So, Three-eighths is less than
three-fifths.

Fraction Bars

Color the fraction bars to represent each fraction...

Number Lines
Represent each fraction on the number lines...

Which fraction is closer to 0 ?
Which fraction is closer to ?

Denominators

How does each fraction compare to $\frac{1}{2}$?

- If the numerators are the same, then the greater the denominator, the smaller the parts.

If the denominators are the same, then the greater the numerator, the greater the fraction.

So, \qquad

Answer Key
Ways to Compare fractions

Fraction Bars

Color the fraction bars to represent each fraction...

Which is the greater fraction?

$\frac{\text { Use } 1 / 2 \text { as a }}{\text { Benchmark }}$

Which fraction is closer to $0 ? \frac{3}{8}$ Which fraction is closer
to 1 ? $\frac{5}{8}$
-.................................
Look for Common Which fraction is closer
to 1 ? $\frac{5}{8}$
…...............................
Look for Common Which fraction is closer
to 1 ? $\frac{5}{8}$
-.................................
Look for Common Numerators or Denominators
Number Lines
Represent each fraction on the number lines...

How does each fraction compare to $\frac{1}{2}$?
$5 / 8$ is greater than $1 / 2$ and $3 / 8$ is less than $1 / 2$. So $5 / 8$ is greater than 3/8. then the greater the denominator, the smaller the parts.

- If the denominators are the same, then the greater the numerator, the greater the fraction.
- So, Five-eighths is greater than three-eighths.
name:
Date:
Score:
Compdring with fraction Bars \#

\{Color the fraction bars to represent each fraction. Then compare.\} $\frac{2}{3} \bigcirc \frac{3}{6}$| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | $\frac{3}{5} \circlearrowleft \frac{4}{6}$| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | $\left.\frac{3}{4} \circlearrowleft \frac{4}{5}$
 \right\rvert\,\begin{tabular}{l\|l|l|l|l|}
\hline
\end{tabular} |
| :--- | $\frac{3}{8} \bigcirc \frac{2}{4}$| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Answer Key

name:
 \qquad Date: Score: Compdrino with frciction Bars \#
 \{Color the fraction bars to represent each fraction. Then compare. $\}$

$\frac{2}{3} \odot \frac{3}{6}$

$\frac{3}{5}$ © $<\frac{4}{6}$

$$
\frac{3}{4}<\frac{4}{5}
$$

name:

\qquad Date: \qquad Score: \qquad Compdring with fraction Bdrs \#2
\{Color the fraction bars to represent each fraction. Then compare.\}
$\frac{2}{5} \bigcirc \frac{3}{8}$

$\frac{2}{4} \bigcirc \frac{4}{8}$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\frac{7}{8} \bigcirc \frac{3}{4}$

Answer Key

name: \qquad
\qquad Score: \qquad Compdring with fraction Bdrs \#2
\{Color the fraction bars to represent each fraction. Then compare. $\}$

name: \qquad Date: \qquad Score: \qquad

Compdrijino with Number Lines \#l

\{use the e umber ines to represent each fraction. Then compare.\}

$\frac{2}{3} \bigcirc \frac{3}{8} \stackrel{\sim}{\stackrel{0}{4}, \ldots, \ldots} \underset{\stackrel{1}{4}, \ldots}{\stackrel{1}{4}}$

Answer Key
name: \qquad Date: Score: \qquad

Compariinio with Number Lines \#1

\{Use the ember ines to represent each fraction. Then compare. \} ~

$\frac{3}{5}<\frac{3}{4}$

$\frac{2}{3} \oplus \frac{3}{8}$

name: \qquad Date: \qquad Score: \qquad

Compdrining with Slumber Lines \#2

\{Use the number lines to represent each fraction. Then compare. \}

Answer Key
Name: \qquad Date: \qquad Score: \qquad

Compdrining with Slumber Lines \#2

\{Use the number lines to represent each fraction. Then compare. $\}$

$\frac{2}{3}=\frac{4}{6} \stackrel{0}{\stackrel{+}{4}, \ldots, \ldots} \stackrel{1}{\stackrel{1}{4}}$
$3>1 \stackrel{0}{4}, 1, \stackrel{1}{4}$

Comparing fractions Chart
\{Use the fraction chart to compare the fractions below.\}

$$
\begin{array}{lll}
\frac{2}{5} \bigcirc \frac{5}{8} & \frac{3}{10} \bigcirc \frac{2}{6} & \frac{2}{3} \bigcirc \frac{3}{5} \\
\frac{3}{4} \bigcirc \frac{4}{6} & \frac{2}{8} \bigcirc \frac{1}{3} & \frac{2}{5} \bigcirc \frac{3}{10}
\end{array}
$$

Compdring fractions Chart
Comes
\{Use the fraction chart to compare the fractions below. \}

1									
$\frac{1}{2}$					$\frac{2}{2}$				
$\frac{1}{3}$			$\frac{2}{3}$				$\frac{3}{3}$		
$\frac{1}{4}$			$\frac{2}{4}$		$\frac{3}{4}$			$\frac{4}{4}$	
$\frac{1}{5}$		$\frac{2}{5}$		$\frac{3}{5}$		$\frac{4}{5}$		$\frac{5}{5}$	
$\frac{1}{6}$	$\frac{2}{6}$		$\frac{3}{6}$		$\frac{4}{6}$		$\frac{5}{6}$	$\frac{6}{6}$	
$\frac{1}{8}$	$\frac{2}{8}$		$\frac{3}{8}$	$\frac{4}{8}$	$\frac{5}{8}$	$\frac{6}{8}$		$\frac{7}{8}$	$\frac{8}{8}$
$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$	$\frac{9}{10}$	$\frac{10}{10}$

$\frac{2}{5}<\frac{5}{8}$
$\frac{3}{10}<\frac{2}{6}$
$\frac{2}{3} \geqslant \frac{3}{5}$
$\frac{3}{4}>\frac{4}{6}$
$\frac{2}{8} \geqslant \frac{1}{3}$
$\frac{2}{5} \geqslant \frac{3}{10}$
name: \qquad Date: \qquad Score: \qquad
Comparing fractions to One-Half

Tell whether each fraction is greater than, less than, or equal to $1 / 2$. $\frac{2}{3}$
$\frac{3}{5}$
$\frac{3}{8}$
$\frac{2}{4}$
$\frac{2}{6}$
$\frac{6}{10}$

Answer Key
name: \qquad Date: \qquad Score: \qquad
Compdriniof fractions to ©ne-Half

Tell whether each fraction is greater than, less than, or equal to $1 / 2$.
$\frac{2}{3}$ greater than $\frac{3}{5}$ greater than $\quad \frac{3}{8}$ less than
$\frac{2}{4}$ equal to $\quad \frac{2}{6}$ less than $\quad \frac{6}{10}$ greater than
\qquad Score: \qquad

finding Com non Dtononialtors

Directions: Find common denominators to compare the fractions.

\qquad
\qquad Score: \qquad

Binding Com non Denominators

Directions: Find common denominators to compare the fractions.

name: \qquad Date: \qquad Score: \qquad

Cross Multiplication

Directions: Use the Cross Multiplication Method to compare the fractions.

Answer Key
name: \qquad Date: \qquad Score: \qquad

Cross Multiplication

Directions: Use the Cross Multiplication Method to compare the fractions.
$\frac{2}{3}>\frac{1}{2}$

name: Date: \qquad Score:

$\left\{\begin{array}{l}\text { Use your understanding of comparing fractions, to } \\ \text { order each set of fractions from least to greatest. }\end{array}\right\}$
$\frac{5}{6} \quad \frac{3}{8} \quad \frac{2}{3}$

$$
\frac{5}{8} \quad \frac{8}{10} \quad \frac{1}{2}
$$

$$
\frac{2}{4} \quad \frac{3}{5} \quad \frac{4}{10}
$$

$$
\frac{2}{3} \quad \frac{3}{4} \quad \frac{3}{6}
$$

$$
\frac{3}{8} \quad \frac{4}{6} \quad \frac{2}{4}
$$

Answer Key name: \qquad Date: \qquad Score: \qquad
ORderino fractions \# $\left\{\begin{array}{l}\text { Use your understanding of comparing fractions, to } \\ \text { order each set of fractions from least to greatest. }\end{array}\right\}$

$$
\begin{array}{llllll}
\frac{5}{6} & \frac{3}{8} & \frac{2}{3} & \frac{3}{8} & \frac{2}{3} & \frac{5}{6} \\
\frac{5}{8} & \frac{8}{10} & \frac{1}{2} & \frac{1}{2} & \frac{5}{8} & \frac{8}{10}
\end{array}
$$

$\frac{2}{4} \quad \frac{3}{5} \quad \frac{4}{10} \quad \frac{4}{10} \quad \frac{2}{4} \quad \frac{3}{5}$

$$
\frac{2}{3} \quad \frac{3}{4} \quad \frac{3}{6} \quad \frac{3}{6} \quad \frac{2}{3} \quad \frac{3}{4}
$$

$$
\frac{3}{8} \quad \frac{4}{6} \quad \frac{2}{4} \quad \frac{3}{8} \quad \frac{2}{4} \quad \frac{4}{6}
$$

name: \qquad Date: \qquad Score:
ORdERing fractions \#2 $\left\{\begin{array}{c}\text { Use your understanding of comparing fractions, to } \\ \text { order each set of fractions from greatest to least. }\end{array}\right\}$

$$
\frac{1}{2} \quad \frac{1}{5} \quad \frac{3}{8}
$$

\qquad
$\frac{2}{5} \quad \frac{2}{3} \quad \frac{6}{10}$ \qquad
$\frac{2}{6} \quad \frac{2}{3} \quad \frac{3}{10}$ \qquad
$\frac{3}{4} \quad \frac{5}{6} \quad \frac{2}{5}$ \qquad

$$
\frac{4}{10} \quad \frac{5}{8} \quad \frac{2}{6}
$$

\qquad
name: \qquad Date: \qquad Score: \qquad
(ORdERINg fRaCtions \#2
$\left\{\begin{array}{c}\text { Use your understanding of comparing fractions, to } \\ \text { order each set of fractions from greatest to least. }\end{array}\right\}$
$\begin{array}{llllll}\frac{1}{2} & \frac{1}{5} & \frac{3}{8} & \frac{1}{2} & \frac{1}{5} & \frac{3}{8}\end{array}$
$\begin{array}{llllll}\frac{2}{5} & \frac{2}{3} & \frac{6}{10} & \frac{2}{5} & \frac{6}{10} & \frac{2}{3}\end{array}$
$\begin{array}{llllll}\frac{2}{6} & \frac{2}{3} & \frac{3}{10} & \frac{3}{10} & \frac{2}{6} & \frac{2}{3}\end{array}$
$\begin{array}{llllll}\frac{3}{4} & \frac{5}{6} & \frac{2}{5} & \frac{2}{5} & \frac{3}{4} & \frac{5}{6}\end{array}$
$\begin{array}{llllll}\frac{4}{10} & \frac{5}{8} & \frac{2}{6} & \frac{2}{6} & \frac{4}{10} & \frac{5}{8}\end{array}$
name: \qquad Date: \qquad Score: \qquad
Tr ute or false: Comparing fractions
Three-eighths is greater than four-sixths.

$$
\begin{aligned}
& \frac{3}{8}>\frac{4}{6} \quad \text { True or False? } \\
& \left\{\begin{array}{c}
\text { Use models, pictures, and words in the space e } \\
\text { provided below to prove your answer... }
\end{array}\right\}
\end{aligned}
$$

name: \qquad Date: \qquad Score: \qquad
In rue or false: Compdriniof fractions
Three-eighths is greater than four-sixths.

$$
\frac{3}{8}>\frac{4}{6}
$$

True or False?

False

Responses will vary.

name: Date: \qquad Score: \qquad Comparing \& ORdering fractions Quid
$\{$ Use $<,>$, or = to compare the fractions. $\}$
$\frac{5}{6} \bigcirc \frac{1}{2}$

$\frac{3}{5} \bigcirc \frac{2}{6}$

$\frac{2}{8} \bigcirc \frac{2}{3}$

\{Order each set of fractions from least to greatest. $\}$
$\begin{array}{lll}\frac{2}{3} & \frac{7}{8} & \frac{2}{4}\end{array}$
$\frac{3}{10} \quad \frac{6}{8} \quad \frac{2}{5}$

Answer Key name: \qquad Date: \qquad Score: \qquad Compdring \& ORderino frdetions Quiz $\{$ Use $<,>$, or $=$ to compare the fractions. $\}$

$$
\begin{array}{lll}
\frac{5}{6} \geqslant \frac{1}{2} & \frac{1}{3} \circledast \frac{2}{6} & \frac{3}{5} \geqslant \frac{2}{6} \\
\frac{6}{10} \otimes \frac{4}{6} & \frac{2}{8} \circledast \frac{2}{3} & \frac{5}{6} \geqslant \frac{3}{10} \\
\frac{1}{2} \otimes \frac{5}{8} & \frac{2}{3} \geqslant \frac{2}{5} & \frac{4}{6} \geqslant \frac{2}{3}
\end{array}
$$

\{Order each set of fractions from least to greatest. $\}$

$$
\begin{array}{llllll}
\frac{2}{3} & \frac{7}{8} & \frac{2}{4} & \frac{2}{4} & \frac{2}{3} & \frac{7}{8} \\
\frac{3}{10} & \frac{6}{8} & \frac{2}{5} & \frac{3}{10} & \frac{2}{5} & \frac{6}{8}
\end{array}
$$

Part 4

Cddiino \& subbtractino

STAnDARDS: 4.nF.3, 4.nF. 5

DURATION: 4 to 6 days
CORTENTS:
I. Decomposing Fractions (4 pages)
2. Decomposing Mixed numbers
3. Decomposing Fractions Journal Prompt
4. Decomposing Fractions Quiz
5. Converting Mixed numbers to Improper Fractions
6. Converting Improper Fractions to Mixed numbers
7. Adding Fractions
8. Subtracting Fractions
9. Adding Mixed Numbers
10. Subtracting Mixed numbers
II. Word Problems: Add \& Subtract Fractions
R. Word Problems: Add ε Subtract Mixed numbers
B. Create Your Own Word Problems: Adding ε Subtracting Fractions
14. Adding Fractions with Denominators of $10 \varepsilon 100$
15. Mixed Practice: Adding \& Subtracting Fractions
16. Adding \& Subtracting Fractions Quiz

[^0]
Desenpesing fractions $\frac{6}{6}$ $\left\{\begin{array}{r}\frac{6}{6} \text { is decomposed in } 4 \text { different wa } \\ \text { the fraction bars below. Write an eq } \\ \text { match each of the fraction bars. Th } \\ \text { one has been done for you. }\end{array}\right.$

Answer Key
$\frac{6}{6}$
$\{$
$\frac{6}{6}$ is decomposed in 4 different ways, using
the fraction bars below. Write an equation to
match each of the fraction bars. The first
one has been done for you.

$$
\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{6}{6}
$$

$$
\frac{2}{6}+\frac{2}{6}+\frac{2}{6}=\frac{6}{6}
$$

$$
\frac{4}{6}+\frac{1}{6}+\frac{1}{6}=\frac{6}{6}
$$

$\frac{2}{6}+\frac{4}{6}=\frac{6}{6}$

Decomposino fractions

$\left.8 \frac{8}{8} \begin{array}{l}\text { Use the fraction bars, to decompose } \frac{8}{8} \text { in } 4 \\ \text { different ways. Use different colors for the } \\ \text { different parts. Then write an equation to } \\ \text { represent each decomposed fraction. }\end{array}\right\}$

Decomposino fractions

 $5\left\{\begin{array}{c}\frac{5}{6} \text { is decomposed in } 4 \text { different ways, using } \\ \text { the fraction bars below. Write an equation to } \\ \text { match each of the fraction bars. The first } \\ \text { one has been done for you. }\end{array}\right\}$

$$
\frac{2}{6}+\frac{2}{6}+\frac{1}{6}=\frac{5}{6}
$$

Decomposing frcctions

 $5\left\{\begin{array}{c}\frac{5}{6} \text { is decomposed in } 4 \text { different ways, using } \\ \text { the fraction bars below. Write an equation to } \\ \text { match each of the fraction bars. The first } \\ \text { one has been done for you. }\end{array}\right\}$

$$
\frac{2}{6}+\frac{2}{6}+\frac{1}{6}=\frac{5}{6}
$$

$$
\frac{1}{6}+\frac{3}{6}+\frac{1}{6}=\frac{5}{6}
$$

$$
\frac{4}{6}+\frac{1}{6}=\frac{5}{6}
$$

$$
\frac{2}{6}+\frac{3}{6}=\frac{5}{6}
$$

Decomposino fractions

$\frac{7}{8}$$\left\{\begin{array}{l}\text { Use the fraction bars, to decompose } \frac{7}{8} \text { in } 4 \\ \text { different ways. Use different colors for the } \\ \text { different parts. Then write an equation to } \\ \text { represent each decomposed fraction. }\end{array}\right\}$ | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Becomnosiin

 $\left\{\begin{array}{c}\text { When decomposing mixed numbers, break up the } \\ \text { whole number into fractions equivalent to } 1 \text {, and } \\ \text { which have the same denominator as the fraction. }\end{array}\right\}$

Answer Key

ECCOM\#OSin
$\left\{\begin{array}{c}\text { When decomposing mixed numbers, break up the } \\ \text { whole number into fractions equivalent to } 1 \text {, and } \\ \text { which have the same denominator as the fraction. }\end{array}\right\}$

name: \qquad Date: \qquad Score: \qquad Decomposing fractions Prompt

How many ways can you decompose five-eighths?

$$
\frac{5}{8}=?
$$

$$
\left\{\begin{array}{c}
\text { Use models, pictures, equations, and words in the } \\
\text { space provided below to prove your answer... }
\end{array}\right\}
$$

name: \qquad Date: \qquad Score: \qquad

Becomposiin fraction Q Quill

\{Decompose each of the following fractions in two different ways. $\}$

name: \qquad Date: \qquad Score: \qquad Mixed Numbers to limproper frdetions When converting mixed numbers to improper fractions,
first decompose the whole number and fraction. Then add up the parts to make an improper fraction.

$$
2 \frac{3}{4} \rightarrow \frac{4}{4}+\frac{4}{4}+\frac{3}{4} \rightarrow \frac{11}{4}
$$

Directions: Convert each mixed number to an improper fraction.

$2^{\frac{2}{3}} \rightarrow$
$3 \frac{2}{5} \rightarrow$

Answer Key

name: \qquad Date: \qquad Score: \qquad
Mixed Numbers to limproper frdetions
When converting mixed numbers to improper fractions, first decompose the whole number and fraction. Then add up the parts to make an improper fraction.

$$
2 \frac{3}{4} \rightarrow \frac{4}{4}+\frac{4}{4}+\frac{3}{4} \rightarrow \frac{11}{4}
$$

Directions: Convert each mixed number to an improper fraction.

$$
3 \frac{1}{2} \rightarrow \frac{2}{2}+\frac{2}{2}+\frac{2}{2}+\frac{1}{2} \quad \rightarrow \quad \frac{7}{2}
$$

$2 \frac{2}{3}$

$\frac{3}{3}+\frac{3}{3}+\frac{2}{3}$
$3 \frac{2}{5} \rightarrow \frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{2}{5}$
name:
Date: \qquad Score: \qquad
improper fractions to Mixed Numbers
When converting improper fractions to mixed numbers, first decompose the improper fraction, making as many fractions equivalent to I as possible. Then use the parts to make a mixed number.

$$
\frac{10}{3} \rightarrow \frac{3}{3}+\frac{3}{3}+\frac{3}{3}+\frac{1}{3} \rightarrow 3 \frac{1}{3}
$$

Directions: Convert each improper fraction to a mixed number.

$\frac{9}{4} \rightarrow$

$\frac{11}{3} \rightarrow$ \qquad
$\frac{7}{2}$
\rightarrow
\qquad Date: \qquad Score: \qquad

When converting improper fractions to mixed numbers, first decompose the improper fraction, making as many fractions equivalent to I as possible. Then use the parts to make a mixed number.

$$
\frac{10}{3} \rightarrow \frac{3}{3}+\frac{3}{3}+\frac{3}{3}+\frac{1}{3} \rightarrow 3 \frac{1}{3}
$$

Directions: Convert each improper fraction to a mixed number.

name:

adding fractions

\{Find the sum of each. Find simplest form if needed.

$$
\frac{1}{3}+\frac{1}{3}=-\quad \frac{2}{6}+\frac{3}{6}=-\quad \frac{6}{10}+\frac{1}{10}=
$$

$$
\frac{1}{4}+\frac{2}{4}=-\quad \frac{2}{5}+\frac{2}{5}=\quad \frac{3}{4}+\frac{1}{4}=
$$

$$
\frac{3}{8}+\frac{2}{8}=\quad \frac{1}{2}+\frac{1}{2}=\quad \frac{5}{8}+\frac{1}{8}=
$$

$\frac{2}{6}+\frac{1}{6}=\quad \frac{4}{10}+\frac{3}{10}=\quad \frac{5}{12}+\frac{2}{12}=$
name: \qquad Date: \qquad Score: \qquad

adding fractions

\{Find the sum of each. Find simplest form if needed.\}
$\frac{1}{3}+\frac{1}{3}=\underline{\frac{2}{3}} \quad \frac{2}{6}+\frac{3}{6}=\underline{\frac{5}{6}} \quad \frac{6}{10}+\frac{1}{10}=\underline{\frac{7}{10}}$
$\frac{1}{4}+\frac{2}{4}=\underline{\frac{3}{4}} \quad \frac{2}{5}+\frac{2}{5}=\underline{\frac{4}{5}} \quad \frac{3}{4}+\frac{1}{4}=\underline{\frac{4}{4}}$
$\frac{3}{8}+\frac{2}{8}=\underline{\frac{5}{8}} \quad \frac{1}{2}+\frac{1}{2}=\underline{\frac{2}{2}} \quad \frac{5}{8}+\frac{1}{8}=\underline{\frac{6}{8}}$
$\frac{2}{6}+\frac{1}{6}=\frac{3}{6} \quad \frac{4}{10}+\frac{3}{10}=\underline{\frac{7}{10}} \quad \frac{5}{12}+\frac{2}{12}=\frac{7}{12}$
name:

SUBTRCETiNo fRCGTIORTS

\{Find the difference of each. Find simplest form if needed.\}

$$
\begin{array}{ll}
\frac{2}{3}-\frac{1}{3}=-\frac{5}{6}-\frac{3}{6}= & \frac{6}{10}-\frac{4}{10}= \\
\frac{4}{4}-\frac{2}{4}=-\quad \frac{2}{5}-\frac{2}{5}= & \frac{8}{12}-\frac{5}{12}=
\end{array}
$$

$$
\frac{6}{8}-\frac{2}{8}=-\frac{3}{5}-\frac{1}{5}=-\frac{5}{8}-\frac{1}{8}=
$$

$$
\frac{2}{6}-\frac{1}{6}=-\frac{4}{10}-\frac{3}{10}=-\frac{5}{12}-\frac{2}{12}=
$$

Answer Key
name: \qquad Date: \qquad Score: \qquad

SUBTRCETiRO fRUItion

\{Find the difference of each. Find simplest form if needed.\}
$\frac{2}{3}-\frac{1}{3}=\frac{1}{3} \quad \frac{5}{6}-\frac{3}{6}=\underline{\frac{2}{6}} \quad \frac{6}{10}-\frac{4}{10}=\frac{2}{10}$
$\frac{4}{4}-\frac{2}{4}=\frac{2}{4} \quad \frac{2}{5}-\frac{2}{5}=0 \quad \frac{8}{12}-\frac{5}{12}=\frac{3}{12}$
$\frac{6}{8}-\frac{2}{8}=\underline{\frac{4}{8}} \quad \frac{3}{5}-\frac{1}{5}=\underline{\frac{2}{5}} \quad \frac{5}{8}-\frac{1}{8}=\underline{\frac{4}{8}}$
$\frac{2}{6}-\frac{1}{6}=\frac{\frac{1}{6}}{\frac{4}{10}}-\frac{3}{10}=\underline{\frac{1}{10}} \quad \frac{5}{12}-\frac{2}{12}=\frac{3}{12}$
name: Date: \qquad Score:

Qddindo Mixed Numbers

Directions: Find the sum of each.
$3 \frac{1}{3}+2 \frac{1}{3}=$
$2 \frac{1}{4}+2 \frac{1}{4}=$
$\begin{array}{ll}4 \frac{3}{10}+\frac{4}{10}= & 3 \frac{2}{6}+2 \frac{1}{6}= \\ 3 \frac{5}{8}+3 \frac{1}{8}= & 4 \frac{2}{3}+1 \frac{1}{3}=\end{array}$
$2 \frac{3}{8}+1 \frac{1}{8}=$
$1 \frac{2}{5}+2 \frac{1}{5}=$
\qquad Date: \qquad Score:

Gddined Mixed Numbers

Directions: Find the sum of each.
$3 \frac{1}{3}+2 \frac{1}{3}=5 \frac{2}{3} \quad 2 \frac{3}{8}+1 \frac{1}{8}=3 \frac{4}{8}$ or $3 \frac{1}{2}$
$2 \frac{1}{4}+2 \frac{1}{4}=\underline{4} \frac{2}{4}$ 아 $4 \frac{1}{2} 1 \frac{2}{5}+2 \frac{1}{5}=3 \frac{3}{5}$
$4 \frac{3}{10}+\frac{4}{10}=\underline{4 \frac{7}{10}} 3 \frac{2}{6}+2 \frac{1}{6}=5 \frac{3}{6} \circ 5 \frac{1}{2}$
$3 \frac{5}{8}+3 \frac{1}{8}=6 \frac{6}{8}$ or $6 \frac{3}{4} \underline{\underline{2}} \frac{2}{3}+1 \frac{1}{3}=\underline{5 \frac{3}{3} \circ r} 6$
$3 \frac{2}{10}+2 \frac{3}{10}=5 \frac{5}{10}$ or $5 \frac{1}{2} 3 \frac{2}{6}+2 \frac{2}{6}=5 \frac{4}{6}$ or $5 \frac{1}{2}$
name: Date: \qquad Score: \qquad
Subtraction Mixed Numbers
Directions: Find the difference of each.
$3 \frac{2}{3}-2 \frac{1}{3}=$
$2 \frac{5}{8}-1 \frac{1}{8}=$
$4 \frac{3}{4}-2 \frac{1}{4}=$
$3 \frac{3}{5}-2 \frac{1}{5}=$
$2 \frac{7}{10}-\frac{4}{10}=$
$5 \frac{5}{6}-2 \frac{1}{6}=$
$3 \frac{5}{8}-1 \frac{2}{8}=$
$4 \frac{2}{3}-1 \frac{1}{3}=$
$5 \frac{8}{10}-2 \frac{3}{10}=$
$3 \frac{2}{6}-2 \frac{2}{6}=$
\qquad Date: \qquad Score: \qquad

Subtractimod Mixed Numbers

Directions: Find the difference of each.
$\left.3 \frac{2}{3}-2 \frac{1}{3}=1 \frac{1}{3}-2 \frac{5}{8}-1 \frac{1}{8}=1 \frac{4}{8} \right\rvert\, \frac{1}{2}$

\qquad
\qquad

Word Problems:

Gddine \& subtractino fractions

Use visual fraction models and equations to solve each word problem.

For the cake she is baking, Kayla needs $\frac{5}{6}$ of a cup of sugar. She only has $\frac{2}{6}$ of a cup. How much more sugar does Kayla need to make her cake?
: Kristen is reading a mystery book for her next book report. On Saturday she reads $\frac{2}{5}$ of the book, : and on Sunday she reads $\frac{1}{5}$ of the book. What fraction of the book did Kristen read over the weekend?

Kevin and his friends order a pizza for dinner. They eat $\frac{3}{10}$ of the pizza and then go out to play football.
Afterwards, they are still hungry and: they eat another $\frac{4}{10}$ of the pizza. How much of the pizza did Kevin and his friends eat?

Bobby is walking $\frac{7}{8}$ of a mile to his friend Kyle's house. If he stops at a candy shop after walking $\frac{2}{8}$ of a mile, how far does Bobby still have to walk to reach his friend's house?
\qquad
\qquad
\qquad

Word Problems:

Gddine \& subtractino fractions

Use visual fraction models and equations to solve each word problem.

For the cake she is baking, Kayla needs $\frac{5}{6}$ of a cup of sugar. She only has $\frac{2}{6}$ of a cup. How much more sugar does Kayla need to make her cake?

$$
\frac{3}{6} \text { or } \frac{1}{2} \text { of a cup of sugar }
$$

: Kristen is reading a mystery book for her next book report. On Saturday she reads $\frac{2}{5}$ of the book, : and on Sunday she reads $\frac{1}{5}$ of the book. What fraction of the book did Kristen read over the weekend?

$$
\frac{3}{5} \text { of the book. }
$$

Bobby is walking $\frac{7}{8}$ of a mile to his friend Kyle's house. If he stops at a candy shop after walking $\frac{2}{8}$ of a mile, how far does Bobby still have to walk to reach his friend's house?
$\frac{7}{10}$ of the pizza.

name:

\qquad
\qquad
\qquad

Word Problems:

Qddimo \& subtrdetind Mixed Numbers

Use visual fraction models and equations to solve each word problem.

Penny ordered pizza for her party. At the end of the party there was $2 \frac{1}{8}$ of pepperoni pizza left and $\left\lvert\, \frac{3}{8}\right.$ of cheese pizza left. How much total pizza did Penny have left over?

It takes Logan $3 \frac{3}{4}$ hours to drive to his grandparents' house. If he stops for gas after $1 \frac{1}{4}$ hours, how much longer will it take for him to reach their house?

Matt spent the weekend working on his science project. On Satur day he spent $2 \frac{1}{2}$ hours working on the science project and on Sunday he spent $\left\lvert\, \frac{1}{2}\right.$ hours working on it. How much total time did Matt spend on his project?

Lindsay and Carmen had a contest
to see how who could run more laps around the track in ten minutes. Lindsay ran $2 \frac{2}{6}$ laps and Carmen ran $4 \frac{5}{6}$ laps. How many more laps did Carmen run than Lindsay?

name: Date:

\qquad
\qquad
Word Problems:

addinod \& subtractiond Mixed Numbers

Use visual fraction models and equations to solve each word problem.

Penny ordered pizza for her party. At the end of the party there was $2 \frac{1}{8}$ of pepperoni pizza left and $1 \frac{3}{8}$ of cheese pizza left. How much total pizza did Penny have left over?

$$
3 \frac{4}{8} \text { or } 3 \frac{1}{2} \text { pizzas left over. }
$$

It takes Logan $3 \frac{3}{4}$ hours to drive to his grandparents' house. If he stops for gas after $1 \frac{1}{4}$ hours, how much longer will it take for him to reach their house?
$2 \frac{2}{4}$ or $2 \frac{1}{2}$ hours left.

Matt spent the weekend working on his science project. On Satur day he spent $2 \frac{1}{2}$ hours working on the science project and on Sunday he spent $\left\lvert\, \frac{1}{2}\right.$ hours working on it. How much total time did Matt spend on his project?

He spend 4 hours on his project.

Lindsay and Carmen had a contest to see how who could run more laps around the track in ten minutes. Lindsay ran $2 \frac{2}{6}$ laps and Carmen ran $4 \frac{5}{6}$ laps. How many more laps did Carmen run than Lindsay?
$2 \frac{3}{6}$ or $2 \frac{1}{2}$ more laps.
name: \qquad Date: \qquad Score: \qquad Create Your © win Word Problems: adding \& subtracting fractions
\{write and solve sour own word problems for each\} ~

$$
\frac{3}{5}+\frac{1}{5}=
$$

\qquad

$$
2^{\frac{1}{4}+1}+\frac{2}{4}=
$$

\qquad
$\frac{5}{8}-\frac{2}{8}=$ \qquad

$$
4 \frac{5}{6}-2 \frac{2}{6}=
$$

\qquad
name: \qquad Date: \qquad Score: \qquad
adding fractions with Denominators of io \& Di)
\{Find equivalent fractions. Then find the sum.\}

$$
\begin{array}{ll}
\frac{3}{10}+\frac{20}{100}=- & \frac{60}{100}+\frac{2}{10}= \\
\frac{40}{100}+\frac{5}{10}=- & \frac{7}{10}+\frac{10}{100}=- \\
\frac{4}{10}+\frac{30}{100}=- & \frac{50}{100}+\frac{4}{10}=
\end{array}
$$

$$
\frac{60}{100}+\frac{2}{10}=-\quad \frac{9}{10}+\frac{10}{100}=
$$

$$
\frac{1}{10}+\frac{40}{100}=
$$

$$
\frac{70}{100}+\frac{2}{10}=
$$

\qquad Date: \qquad Score: \qquad
adding fractions with Denominators of
\{Find equivalent fractions. Then find the sum.\}

$$
\begin{array}{ll}
\frac{3}{10}+\frac{20}{100}=\frac{5}{10} & \frac{60}{100}+\frac{2}{10}=\frac{8}{10} \\
\frac{40}{100}+\frac{5}{10}=\frac{q}{10} & \frac{7}{10}+\frac{10}{100}=\frac{8}{10}
\end{array}
$$

$$
\frac{4}{10}+\frac{30}{100}=\frac{7}{10}
$$

$$
\frac{50}{100}+\frac{4}{10}=\frac{q}{10}
$$

$$
\frac{60}{100}+\frac{2}{10}=\frac{8}{10}
$$

$$
\frac{q}{10}+\frac{10}{100}=\frac{10}{10} \text { or } 1
$$

$$
\frac{1}{10}+\frac{40}{100}=\frac{5}{10}
$$

$$
\frac{70}{100}+\frac{2}{10}=\frac{q}{10}
$$

name: \qquad

Mixed Prdetice:

Qddinod \& subtraction fractions

\{Show one way to decompose the following fractions. $\}$
$\frac{4}{5}$
$\frac{7}{8}$
\{Find the sum for each.\}

$$
\frac{1}{6}+\frac{4}{6}=\quad \frac{3}{4}+\frac{1}{4}=
$$

$2 \frac{1}{3}+3 \frac{1}{3}=\quad 2 \frac{1}{4}+2 \frac{2}{4}=$
$\{$ Find the difference for each. $\}$

$$
\frac{4}{5}-\frac{2}{5}=\quad \frac{6}{8}-\frac{2}{8}=
$$

$$
3 \frac{7}{10}-\frac{6}{10}=\quad 3 \frac{4}{6}-2 \frac{1}{6}=
$$

Answer Key
name: \qquad Date: Score: \qquad

Mixed Practice:

Qddined \& subtracting fractions

\{Show one way to decompose the following fractions.\} Answers will vary.
$\frac{4}{5}$

\{Find the sum for each.\}

$$
\frac{1}{6}+\frac{4}{6}=\underline{\frac{5}{6}} \quad \frac{3}{4}+\frac{1}{4}=\underline{\frac{4}{4} \text { or } 1}
$$

$$
2 \frac{1}{3}+3 \frac{1}{3}=5 \frac{2}{3} \quad 2 \frac{1}{4}+2 \frac{2}{4}=4 \frac{3}{4}
$$

\{Find the difference for each. $\}$

$$
\begin{aligned}
& \frac{4}{5}-\frac{2}{5}=\frac{3}{5} \quad \frac{6}{8}-\frac{2}{8}=\frac{4}{8} \circ \frac{1}{2} \\
& 3 \frac{7}{10}-\frac{6}{10}=3 \frac{1}{10} \quad 3 \frac{4}{6}-2 \frac{1}{6}=\frac{3}{6} \text { or } \left\lvert\, \frac{1}{2}\right.
\end{aligned}
$$

\qquad

Cddinoo \& subtractino fractions Quic

Find the sum or difference.
$\frac{3}{6}+\frac{2}{6}=$
$\frac{4}{5}-\frac{2}{5}=$
$2 \frac{3}{8}+1 \frac{1}{8}=$
$5 \frac{8}{10}-2 \frac{4}{10}=$
$3^{\frac{3}{5}}-2 \frac{2}{5}=$

Use visual fraction models and equations to solve each word problem.

At the basketball game last week, Max made $\frac{3}{8}$ of the team's baskets and Caleb made $\frac{1}{8}$ of the baskets. What fraction of the baskets did Max and Caleb score together?
 from dinner $\frac{7}{10}$ Dana ate for lunch the next day. What fraton of the pizza was left after Dana ate lunch?
\qquad
\qquad Score: \qquad

Qddined \& subtractino fractions Quic

Find the sum or difference.
$\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$

Use visual fraction models and equations to solve each word problem.

At the basketball game last week, Max made $\frac{3}{8}$ of the team's baskets and Caleb made of $\frac{1}{8}$ of the baskets. What fraction of the baskets did Max and Caleb score together?
$\frac{4}{8}$ or $\frac{1}{2}$ of the baskets.

There was $\frac{7}{10}$ of a pizza left over from dinner. Dana ate $\frac{3}{10}$ for lunch the next day. What fraction of the pizza was left after Dana ate lunch?

$$
\frac{4}{10} \text { or } \frac{2}{5} \text { of a pizza. }
$$

STAnDARDS: $4 . \mathrm{nF} .4$
DURATIOn: 2 to 4 days
CORTENTS:

1. Understanding Fraction Multiplication (2 pages)
2. Fraction Multiplication Practice
3. Word Problems: Multiplying Fractions
4. Create Your Own Word Problems: Fraction Multiplication
5. Recipe Task Cards (2 pages)
6. Fraction Bracelets
7. Multiplying Fractions Quiz

TOTAL PAGES: 9
name:
Date: \qquad Score: \qquad Uninderstandino fraction Multipliedtion +1 When multiplying a fraction by a whole number, you are
adding equal parts of a whole a given number of times. For instance, when multiplying $\frac{1}{3}$ by 4 , you are adding $\frac{1}{3}$ four times...

$$
\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{4}{3}
$$

This is the same as...

Use the models to find the product of each.
$6 \times \frac{1}{5}=$

$5 \times \frac{1}{2}=$

\square
\square
$5 \times \frac{1}{3}=$ \square

Answer Key

name:

\qquad Date: \qquad Score: \qquad
Understandino fraction Multipliedtion \#

This is the same as...

Use the models to find the product of each.
$6 \times \frac{1}{5}=\frac{6}{5}$

$5 \times \frac{1}{2}=\frac{5}{2}$

$5 \times \frac{1}{3}=\frac{5}{3}$
name:
Date: \qquad Score: \qquad
Understanding fraction Multiplication \#2 \vdots A fraction such as $\frac{2}{3}$ can be interpreted as $2 \times \frac{1}{3}$. So, $4 \times \frac{2}{3}$ is the same as $8 \times \frac{1}{3} \ldots$
=

$$
4 \times \frac{2}{3}=\frac{8}{3}
$$

Use the models to find the product of each.

$$
2 \times \frac{2}{3}=-\quad \begin{array}{|l|l|l|}
\hline & & \\
\hline & & \\
\hline
\end{array}
$$

$3 \times \frac{3}{4}=$

$2 \times \frac{3}{5}=$

Answer Key name: \qquad Date: \qquad Score: \qquad Understanding fraction Muttiplication \#2

A fraction such as $\frac{2}{3}$ can be interpreted as $2 \times \frac{1}{3}$.
So, $4 \times \frac{2}{3}$ is the same as $8 \times \frac{1}{3}$.
\square
\square
\square
\square $=$ \square
\square
\square

$$
4 \times \frac{2}{3}=\frac{8}{3}
$$

Use the models to find the product of each.

$$
\begin{aligned}
& 2 \times \frac{2}{3}=\frac{4}{3} \\
& 4 \times \frac{2}{5}=\frac{8}{5} \\
& 3 \times \frac{3}{4}=\frac{9}{4} \\
& 2 \times \frac{3}{5}=\frac{6}{5}
\end{aligned}
$$

name: Date: \qquad Score: \qquad
fraction Multiplication Practice
$\{$ Find the product for each. $\}$
$4 \times \frac{1}{2}=-3 \times \frac{3}{8}=-5 \times \frac{1}{4}=$
$7 \times \frac{2}{3}=-3 \times \frac{2}{4}=-3 \times \frac{2}{5}=$

$$
4 \times \frac{3}{5}=-5 \times \frac{1}{2}=-\quad 4 \times \frac{1}{3}=
$$

$5 \times \frac{2}{6}=-3 \times \frac{3}{5}=-6 \times \frac{1}{4}=$
$5 \times \frac{1}{5}=-5 \times \frac{2}{3}=-5 \times \frac{1}{8}=$
name:
Date: \qquad Score: \qquad
fraction Multiplication Practice
$\{$ Find the product for each. $\}$
$4 \times \frac{1}{2}=\frac{4}{2} \quad 3 \times \frac{3}{8}=\frac{9}{8} \quad 5 \times \frac{1}{4}=\frac{5}{4}$
$7 \times \frac{2}{3}=\frac{14}{3} \quad 3 \times \frac{2}{4}=\frac{6}{4} \quad 3 \times \frac{2}{5}=\frac{6}{5}$
$4 \times \frac{3}{5}=\frac{12}{5} \quad 5 \times \frac{1}{2}=\frac{5}{2} \quad 4 \times \frac{1}{3}=\frac{4}{3}$
$5 \times \frac{2}{6}=\frac{10}{6} \quad 3 \times \frac{3}{5}=\frac{9}{5} \quad 6 \times \frac{1}{4}=\frac{6}{4}$
$5 \times \frac{1}{5}=\frac{5}{5} \quad 5 \times \frac{2}{3}=\frac{10}{3} \quad 5 \times \frac{1}{8}=\frac{5}{8}$
name: \qquad
\qquad
\qquad
Word Problems:

Use visual fraction models and equations to solve each word problem.

Mr. Larken, the P.E. teacher, has his students run $\frac{1}{2}$ of a mile during each class. If the class meets 5 days a week, how many miles do his students run each week?

Cameron fills 5 bags with candy at the Sweet Shop. Each bag contains $\frac{1}{4}$ of a pound of candy. How much candy does Cameron get altogether?

Maggie is buying ingredients to make : cookies. She needs $\frac{2}{3}$ of a cup of sugar for each batch of cookies she makes. If she plans to make 3 batches, how much sugar should Maggie buy?
\qquad
\qquad
\qquad Word Problems: Multiplyind frdetions

Use visual fraction models and equations to solve each word problem.

Mr. Larken, the P.E. teacher, has his students run $\frac{1}{2}$ of a mile during each class. If the class meets 5 days a week, how many miles do his students run each week?

$\frac{5}{2}$ miles

Cameron fills 5 bags with candy at the Sweet Shop. Each bag contains $\frac{1}{4}$ of a pound of candy. How much candy does Cameron get altogether? of a pound of candy.

Maggie is buying ingredients to make : cookies. She needs $\frac{2}{3}$ of a cup of sugar for each batch of cookies she makes. If she plans to make 3 batches, how much sugar should Maggie buy?

$\frac{6}{3}$ cups of sugar

name: \qquad Date: \qquad score \qquad
\{wrrte and solve sour own word provelens for each\}

$$
3 \times \frac{1}{2}=
$$

$$
4 \times \frac{1}{5}=
$$

$$
5 \times \frac{3}{4}=
$$

$2 \times \frac{5}{8}=$

Chewy Chocolate Cookies
Directions:
Mix the following ingredients together. Form dough into balls and place on a baking sheet. Bake at 350 degrees for 15 minutes. Enjoy!

Ingredients:
$\frac{3}{4}$ Cup of Flour
$\frac{1}{2}$ Cups of Sugar
$\frac{1}{3}$ Cup of Salt
$\frac{2}{3}$ Cup of Cocoa Powder
$\frac{2}{5}$ Pound of Butter
$\frac{1}{4}$ Tablespoon of Baking Soda

How much of each ingredient would be needed to make 5 batches of cookies? Record your answers on a separate piece of paper.

Chewy Chocolate Cookies
Directions:
Mix the following ingredients together. Form dough into balls and place on a baking sheet. Bake at 350 degrees for 15 minutes. Enjoy!

Ingredients:
$\frac{3}{4}$ Cup of Flour
$\frac{1}{2}$ Cup of Sugar
$\frac{1}{3}$ Cup of Salt

Serves: I batch makes 12 cookies.
$\frac{2}{3}$ Cup of Cocoa Powder
$\frac{2}{5}$ Pound of Butter
$\frac{1}{4}$ Tablespoon of Baking Soda

How much of each ingredient would be needed to make 5 batches of cookies? Record your answers on a separate piece of paper.

Areyser Chewy Chocolate Cookies
Directions:
Mix the following ingredients together. Form dough into balls and place on a baking sheet. Bake at 350 degrees for 15 minutes. Enjoy!

Ingredients:

$$
\begin{aligned}
& \frac{3}{4} \text { Cup of Flour } \frac{15}{4} \\
& \frac{1}{2} \text { cup of Sugar } \frac{5}{2} \\
& \frac{1}{3} \text { cup of Salt } \frac{5}{3}
\end{aligned}
$$

Serves: I batch makes 12 cookies. $\frac{2}{3}$ Cup of Cocoa Powder $\frac{10}{3}$ $\frac{2}{5}$ Pound of Butter $\frac{10}{5}$ $\frac{1}{4}$ Tablespoon of Baking Soda $\frac{5}{4}$

How much of each ingredient would be needed to make 5 batches of cookies? Record your answers on a separate piece of paper.

Chowy Chocolate Cookies
Directions:
Mix the following ingredients together. Form dough into balls and place on a baking sheet. Bake at 350 degrees for 15 minutes. Enjoy!

Ingredients:
$\frac{3}{4}$ Cup of Flour
$\frac{1}{2}$ Cup of Sugar
$\frac{1}{3}$ Cup of Salt

Serves: I batch makes 12 cookies.
$\frac{2}{3}$ Cup of Cocoa Powder
$\frac{2}{5}$ Pound of Butter
$\frac{1}{4}$ Tablespoon of Baking Soda

How much of each ingredient would be needed to make 5 batches of cookies? Record your answers on a separate piece of paper.

Berry-Blue Brueberry Muffins
Directions:
Mix the following ingredients together. Pour batter into a muffin tin.
Bake at 375 degrees for 12 minutes. Enjoy!

Ingredients:
$\frac{3}{5}$ Cup of Flour
$\frac{2}{3}$ Cup of Sugar
$\frac{3}{10}$ Cup of Salt

Serves: I batch makes 12 muffins.
$\frac{5}{6}$ Cup of Blueberries
$\frac{3}{8}$ Pound of Butter
$\frac{1}{2}$ Tablespoon of Baking Soda
How much of each ingredient would be needed to make 6 batches of muffins? Record your answers on a separate piece of paper.

Berry-Blue Blueberry Muffins
Directions:
Mix the following ingredients together. Pour batter into a muffin tin. Bake at 375 degrees for 12 minutes. Enjoy!

Ingredients:
$\frac{3}{5}$ Cup of Flour
$\frac{2}{3}$ Cup of Sugar
$\frac{3}{10}$ Cup of Salt

Serves: I batch makes 12 muffins.
$\frac{5}{6}$ Cup of Blueberries
$\frac{3}{8}$ Pound of Butter
$\frac{1}{2}$ Tablespoon of Baking Soda

How much of each ingredient would be needed to make 6 batches of muffins? Record your answers on a separate piece of paper.

Berry-Blue Blueberzy Muffins
Directions:
Mix the following ingredients together. Pour batter into a muffin tin. Bake at 375 degrees for 12 minutes. Enjoy!

Ingredients:
$\frac{3}{5}$ Cup of Flour $\frac{18}{5}$
$\frac{2}{3}$ Cup of Sugar $\frac{12}{3}$

$$
\frac{3}{10} \text { Cup of Salt } \frac{18}{10}
$$

Serves: I batch makes 12 muffins. $\frac{5}{6}$ Cup of Blueberries $\frac{30}{6}$ $\frac{3}{8}$ Pound of Butter $\frac{18}{8}$ $\frac{1}{2}$ Tablespoon of Baking Soda $\frac{6}{2}$

How much of each ingredient would be needed to make 6 batches of muffins? Record your answers on a separate piece of paper.

Berry-Blue Blueberry Muffins
Directions:
Mix the following ingredients together. Pour batter into a muffin tin. Bake at 375 degrees for 12 minutes. Enjoy!

Ingredients:

$\frac{3}{5}$ Cup of Flour	$\frac{5}{6}$
$\frac{2}{3}$ Cup of Sugar	$\frac{3}{8}$
$\frac{3}{10}$ Cup of Salt	$\frac{1}{2}$

$\frac{5}{6}$ Cup of Blueberries
$\frac{3}{8}$ Pound of Butter
$\frac{1}{2}$ Tablespoon of Baking Soda

How much of each ingredient would be needed to make 6 batches of muffins? Record your answers on a separate piece of paper.

fraction Bracelets

Make a fraction bracelet with a total of 12 beads. Your bracelet must have 4 different colors. Use the criteria below to create your bracelet:
$\frac{1}{4}$ of the beads should be
$\frac{1}{4}$ of the beads should be
\{Color \# I\}
\qquad
\{Color \#2\}
$\frac{1}{3}$ of the beads should be
\{Color \#3\}
$\frac{1}{6}$ of the beads should be
\{Color \#4\}

GRdGtion RRCGelets

Make a fraction bracelet with a total of 12 beads. Your bracelet must have 4 different colors. Use the criteria below to create your bracelet:
$\frac{1}{4}$ of the beads should be
\{Color \# I $\}$
$\frac{1}{4}$ of the beads should be
\{Color \#2\}
$\frac{1}{3}$ of the beads should be
\{Color \#3\}
$\frac{1}{6}$ of the beads should be

Answer Key

GRवGtion RRCGelets

Make a fraction bracelet with a total of 12 beads. Your bracelet must have 4 different colors. Use the criteria below to create your bracelet:
$\frac{1}{4}$ of the beads should be
$\frac{1}{4}$ of the beads should be $\frac{1}{3}$ of the beads should be $\frac{1}{6}$ of the beads should be

3 beads of this color.
\{Color \#1\}
3 beads of this color.
\{Color \#2\}
4 beads of this color.
\{Color \#3\}
2 beads of this color.

Make a fraction bracelet with a total of 12 beads. Your bracelet must have 4 different colors. Use the criteria below to create your bracelet:
$\frac{1}{4}$ of the beads should be
$\frac{1}{4}$ of the beads should be
\{Color \#2 \}
$\frac{1}{3}$ of the beads should be
\{Color \#3\}
$\frac{1}{6}$ of the beads should be
name: \qquad Score: \qquad

fraction Multiplication Quid

Find the product for each.

$$
4 \times \frac{2}{6}=
$$

$$
2 \times \frac{3}{5}=-
$$

$$
5 \times \frac{1}{4}=
$$

$$
3 \times \frac{2}{5}=-
$$

$$
5 \times \frac{3}{4}=
$$

Use visual fraction models and equations to solve each word problem.

Sophia needs $\frac{1}{3}$ of a pound of butter for each cake that she bakes. If she decides to make a total of 5 cakes, how much butter will she need?

Jack, Juan, and Chi are having pie for dessert. If they each eat $\frac{3}{4}$ of a pie, how much did the 3 friends eat altogether?
\qquad Score: \qquad

fraction Multiplication Quid

Find the product for each.

$$
4 \times \frac{2}{6}=\frac{8}{6}
$$

$$
2 \times \frac{3}{5}=\frac{6}{5}
$$

$$
5 \times \frac{1}{4}=\frac{5}{4}
$$

Use visual fraction models and equations to solve each word problem.

Sophia needs $\frac{1}{3}$ of a pound of butter for each cake that she bakes. If she decides to make a total of 5 cakes, how much butter will she need?
$\frac{5}{3}$ of a pound of butter

Jack, Juan, and Chi are having pie for dessert. If they each eat $\frac{3}{4}$ of a pie, how much did the 3 friends eat altogether?

$$
3 \times \frac{2}{5}=\frac{6}{5}
$$

$$
5 \times \frac{3}{4}=\frac{15}{4}
$$

PART 6

Decimals \&

,

A

STAnDARDS: $4 . \mathrm{nF} .6$ and $4 . \mathrm{nF} .7$
DURATIOn: 3 to 4 days
CONTENTS:

1. Relating Fractions \& Decimals
2. Fractions \& Decimals: Tenths
3. Fractions \& Decimals: Hundredths
4. Fractions \rightarrow Decimals: Tenths
5. Fractions \rightarrow Decimals: Hundredths
6. Decimals \rightarrow Fractions: Tenths
7. Decimals \rightarrow Fractions: Hundredths
8. Comparing Decimals Using Models
q. Comparing Decimals
9. Ordering Decimals

TOTAL PAGES: 10

name:

\qquad Date: \qquad Score: \qquad

Relating fractions \& Decinals

\vdots Decimal notation is another way to represent "part" of a w
\vdots -
\vdots -

- A Decimals relate to fractions with denominators of 10,100 , ent is used to separate the "whole" and the "p
Here are some examples of how fractions relate to decimals..

Answer Key

name: \qquad Date: \qquad Score: \qquad

Relating fractions \& Decinals

\vdots Decimal notation is another way to represent "part" of a w
\vdots -
\vdots -

- A Decimals relate to fractions with denominators of 10,100 , ent is used to separate the "whole" and the "p
Here are some examples of how fractions relate to decimals..
name: Date: \qquad Score: \qquad

frdctions \& Eccimals: "uniths

Write each of the following as a fraction, a decimal., and in word form...

Word Form:

Answer Key
name: \qquad Date: \qquad Score: \qquad

frdctions \& Eccimals: "uniths

Write each of the following as a fraction, a decimal., and in word form...

Six tenths

Word Form:
Four tenths

Word Form:
Two tenths

Eight tenths
name: \qquad Date: Score:
\qquad fraction s : ECcimals: Hulindredths

Write each of the following as a fraction, a decimal., and in word form...

Word Form:
\qquad

Word Form:
\#

Word Form:
4.NF. 6

Answer Key
name: \qquad Date: Score:

frdetions \& Decimals: Humdredths

Write each of the following as a fraction, a decimal., and in word form...

Word Form:
Sixty-six hundredths

Fifty-four hundredths

Word Form:
Eighty-two hundredths
name \qquad Date: \qquad Score:
fractions \rightarrow Decimals: Tenths
Write each fraction as a decimal.

$$
\begin{array}{lll}
\frac{4}{10}= & \frac{6}{10}=\ldots & \frac{7}{10}= \\
\frac{5}{10}= & \frac{10}{10}=\ldots & \frac{9}{10}= \\
\frac{2}{10}= & \frac{3}{10}= & \frac{1}{10}=
\end{array}
$$

Explain how you fractions and decimals are related and how you change a fraction to a decimal...
\qquad
\qquad
\qquad
\qquad

Answer Key
name: \qquad Date: \qquad Score:
fractions \rightarrow Decimals: Tenths
Write each fraction as a decimal.

$$
\begin{array}{lll}
\frac{4}{10}=0.4 & \frac{6}{10}=0.6 & \frac{7}{10}=0.7 \\
\frac{5}{10}=0.5 & \frac{10}{10}=0.10 & \frac{9}{10}=0.9 \\
\frac{2}{10}=0.2 & \frac{3}{10}=0.3 & \frac{1}{10}=0.1
\end{array}
$$

Explain how you fractions and decimals are related and how you change a fraction to a decimal..

Responses will vary.
\qquad
\qquad
\qquad
\qquad
name:
Date: \qquad Score: \qquad
fractions \rightarrow Decimals: Hundredths
Write each fraction as a decimal.
$\frac{48}{100}=$
$\frac{65}{100}=$
$\frac{73}{100}=$
$\frac{54}{100}=$
$\frac{12}{100}=$
$\frac{36}{100}=$
$\frac{2}{100}=$
$\frac{18}{100}=$
$\frac{74}{100}=$
$\frac{88}{100}=$
$\frac{32}{100}=\quad \frac{25}{100}=\quad \frac{40}{100}=$

name: Date: \qquad Score: \qquad

Decimals \rightarrow fractions: "ninths

Write each decimal as a fraction.

Explain how you change a fraction to a decimal...

Answer Key
name: \qquad Date: \qquad Score: \qquad

Decimals \rightarrow fractions: "ninths

Write each decimal as a fraction.
$0.9=\underline{\frac{9}{10}} \quad 0.2=\underline{\frac{2}{10}} \quad 0.6=\underline{\frac{6}{10}}$
$0.5=\underline{\frac{5}{10}}$
$0.3=\underline{\frac{3}{10}}$
$1.0=\underline{\frac{10}{10}}$
$0.4=\underline{\frac{4}{10}}$
$0.8=\underline{\frac{8}{10}}$
$0.7=\underline{\frac{7}{10}}$

Explain how you change a fraction to a decimal... Responses will vary.
name: Date: Score:

Decimals \rightarrow fractions: Hundredths
Write each decimal as a fraction.
$0.29=$
$0.45=$
$0.08=$
$0.56=$
$0.21=$
$0.98=$
$0.13=$
$0.50=$
$0.22=$
$0.05=$
$0.63=$
$0.80=$

Answer Key
name: \qquad Date: \qquad Score: \qquad

Decimals \rightarrow fractions: Hundredths

Write each decimal as a fraction.

$$
\begin{array}{lll}
0.29=\frac{\frac{29}{100}}{} & 0.45=\frac{45}{100} & 0.08=\frac{8}{100} \\
0.56=\frac{56}{100} & 0.21=\frac{21}{100} & 0.98=\frac{98}{\frac{100}{}} \\
0.09=\frac{\frac{9}{100}}{} & 0.50=\underline{\frac{50}{100}} & 0.13=\frac{\frac{13}{100}}{} \\
0.22=\frac{22}{100} & 0.05=\frac{5}{100} & 0.84=\frac{84}{100} \\
0.42=\frac{42}{100} & 0.63=\underline{\frac{63}{100}} & 0.80=\underline{\frac{80}{100}}
\end{array}
$$

name: Date: Score:

Compdpino Decimals Using Models

Color the models to help compare each set of decimals.

$$
0.8 \ldots 0.79
$$

$0.4 \ldots 0.40$

Answer Key
name: \qquad Date:
Score:

CompaRing Decimals Using Models

Color the models to help compare each set of decimals.

0.8
 ≥ 0.79

$0.3 \geq 0.29$

name: Date: \qquad Score:

Comparioid

Compare each set of decimals.

Answer Key
name: \qquad Date: \qquad Score:

COMDGRiDind

Compare each set of decimals.

$0.9 \leq 0.99$	$0.33 \geq 0.32$	$0.8=0.80$
$0.55 \geq 0.45$	$0.28 \leq 0.82$	$0.1 \geq 0.01$
$0.06 \leq 0.7$	$0.3 \geq 0.25$	$0.15 \leq 0.5$
$0.31 \geq 0.13$	$0.48 \leq 0.5$	$0.4 \geq 0.33$
$0.63 \geq 0.36$	$0.7=0.70$	$0.04 \leq 0.4$
$0.22 \leq 0.3$	$0.42 \geq 0.24$	$0.89 \geq 0.79$

name: \qquad Date: \qquad Score:

(ORdERing

Order each set of decimals from least to greatest.
$\begin{array}{llll}0.6 & 0.06 & 0.66 & 0.07\end{array}$
$\begin{array}{llll}0.33 & 0.3 & 0.03 & 0.35\end{array}$
$\begin{array}{llll}0.8 & 0.07 & 0.08 & 0.77\end{array}$
$\begin{array}{llll}0.04 & 0.05 & 0.5 & 0.45\end{array}$

Order each set of decimals from greatest to least.
$\begin{array}{llll}0.9 & 0.88 & 0.8 & 0.09\end{array}$
$\begin{array}{llll}0.46 & 0.04 & 0.6 & 0.4\end{array}$
$0.20 .29 \quad 0.03 \quad 0.39$

Answer Key
name: \qquad Date: \qquad Score:

©RdeRiino

Order each set of decimals from least to greatest.
$\begin{array}{llllllll}0.6 & 0.06 & 0.66 & 0.07 & 0.06 & 0.07 & 0.6 & 0.66\end{array}$
$\begin{array}{llll}0.33 & 0.3 & 0.03 & 0.35\end{array}$
$0.03 \quad 0.3$
$0.33 \quad 0.35$
$\begin{array}{llllllll}0.8 & 0.07 & 0.08 & 0.77 & 0.07 & 0.08 & 0.77 & 0.8\end{array}$
$\begin{array}{llll}0.04 & 0.05 & 0.5 & 0.45\end{array}$
$0.04 \quad 0.05$
0.45
0.5

Order each set of decimals from greatest to least.
$\begin{array}{lllllllll}0.9 & 0.88 & 0.8 & 0.09 & 0.09 & 0.8 & 0.88 & 0.9\end{array}$
$\begin{array}{llll}0.46 & 0.04 & 0.6 & 0.4\end{array}$
$\begin{array}{llll}0.04 & 0.4 & 0.46 & 0.6\end{array}$
$0.20 .29 \quad 0.03 \quad 0.39$
0.03
0.2
0.29
0.39

Name: \qquad Date: \qquad Score: \qquad

Fractions Assessment

1. Use the diagram below to tell which fraction is equivalent to $\frac{3}{4}$?

A. $\frac{9}{10}$
B. $\frac{6}{8}$
C. $\frac{6}{12}$
D. $\frac{9}{12}$
4.NF. 1
2. Which of the following is NOT equivalent to $\frac{3}{6}$?
A. $\frac{1}{2}$
B. $\frac{2}{4}$
C. $\frac{5}{8}$
D. $\frac{5}{10}$
4.NF. 1
3. When comparing $\frac{2}{3}$ and $\frac{3}{4}$, which of the following shows the fractions written correctly and compared with common denominators?
A. $\frac{8}{12}>\frac{9}{12}$
B. $\frac{8}{12}<\frac{9}{12}$
C. $\frac{6}{12}<\frac{8}{12}$
D. $\frac{9}{12}>\frac{6}{12}$
4. Which of the following shows an accurate comparison?
A. $\frac{1}{4}>\frac{1}{2}$
B. $\frac{5}{6}>\frac{2}{3}$
C. $\frac{3}{10}>\frac{7}{8}$
D. $\frac{3}{8}>\frac{2}{3}$
4.NF. 2
5. Which of the following sets of fractions is in order from least to greatest?
A. $\frac{5}{6} \quad \frac{2}{3} \quad \frac{1}{4} \quad \frac{1}{2}$
B. $\frac{2}{3} \frac{1}{4} \quad \frac{1}{2} \quad \frac{5}{6}$
C. $\frac{1}{2} \frac{1}{4} \frac{5}{6} \quad \frac{2}{3}$
D. $\frac{1}{4} \quad \frac{1}{2} \quad \frac{2}{3} \quad \frac{5}{6}$
4.NF. 2
6. Which of the following sets of fractions is in or der from greatest to least?
A. $\begin{array}{lllll}\frac{9}{12} & \frac{5}{8} & \frac{5}{10} & \frac{2}{6}\end{array}$
B. $\frac{5}{10} \quad \frac{2}{6} \quad \frac{5}{8} \quad \frac{9}{12}$
C. $\frac{2}{6} \quad \frac{5}{8} \quad \frac{9}{12} \quad \frac{5}{10}$
D. $\frac{2}{6} \quad \frac{5}{10} \quad \frac{9}{12} \quad \frac{5}{8}$

Fractions Assessment - Page 2
7. Which of the following is NOT an example of $\frac{5}{8}$ decomposed?
A. $\frac{3}{8}+\frac{2}{8}$
B. $\frac{2}{8}+\frac{2}{8}+\frac{1}{8}$
C. $\frac{4}{8}+\frac{2}{8}$
D. $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{2}{8}$
8. Which of the following shows a fraction accurately decomposed?
A. $\frac{2}{5}+\frac{2}{5}=\frac{5}{5}$
B. $\frac{1}{5}+\frac{1}{5}+\frac{2}{5}=\frac{4}{5}$
C. $\frac{4}{8}+\frac{3}{8}=\frac{6}{8}$
D. $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{4}{8}$
9. What is the sum of $\frac{2}{10}$ and $\frac{5}{10}$?
A. $\frac{8}{10}$
C. $\frac{6}{10}$
B. $\frac{7}{10}$
D. $\frac{7}{8}$
10. Find the difference:

$$
\frac{5}{6}-\frac{2}{6}
$$

A. $\frac{2}{6}$
C. $\frac{3}{6}$
B. $\frac{2}{5}$
D. $\frac{3}{5}$
11. What is the sum of $2 \frac{3}{8}$ and $\left\lvert\, \frac{2}{8}\right.$?
A. $3 \frac{4}{8}$
C. $3 \frac{5}{8}$
B. $2 \frac{2}{8}$
D. $2^{\frac{1}{8}}$
4.NF. 3
12. Find the sum:

$$
\frac{5}{10}+\frac{30}{100}
$$

A. $\frac{8}{100}$
C. $\frac{20}{100}$
B. $\frac{8}{10}$
D. $\frac{2}{10}$
4.NF. 5
13. Find the difference:

$$
5 \frac{8}{8}-2 \frac{5}{0}
$$

A. $2 \frac{5}{10}$
C. $2 \frac{3}{10}$
B. $3 \frac{3}{10}$
D. $3 \frac{5}{0}$
4.NF. 3
14. Find the product:

$$
7 \times \frac{1}{4}
$$

A. $\frac{8}{4}$
C. $\frac{7}{2}$
B. $\frac{7}{8}$
D. $\frac{7}{4}$ 4.NF. 4
15. Find the product:

$$
3 \times \frac{3}{4}
$$

A. $\frac{9}{4}$
C. $\frac{9}{2}$
B. $\frac{9}{8}$
D. $\frac{6}{4}$

Fractions Assessment - Page 3

16. Which decimal is represented by the following model?

A. 0.54
B. 5.4
C. 0.55
D. 5.5
17. Which of the following is NOT an example of an equivalent fraction and decimal?
A. $0.8=\frac{8}{10}$
B. $0.2=\frac{2}{100}$
C. $0.28=\frac{28}{100}$
D. $0.82=\frac{82}{100}$
4.NF. 6
18. Which of the following shows seven tenths as a decimal and a fraction?
A. $0.07, \frac{7}{10}$
B. $0.07, \frac{7}{100}$
C. $0.7, \frac{7}{10}$
D. $0.7, \frac{7}{100}$
19. Which of the following shows fifty-four hundredths as a decimal and a fraction?
A. $0.54, \frac{54}{10}$
B. $0.54, \frac{54}{100}$
C. $5.4, \frac{54}{10}$
D. $5.4, \frac{54}{100}$
4.NF. 6
20. Which of the following shows an accurate comparison?
A. $0.5<0.05$
B. $0.5>0.05$
C. $0.55<0.50$
D. $0.55<0.05$
4.NF. 7
21. Which of the following sets of decimals is in or der from least to greatest?
A. $0.33,0.3,0.03,0.4$
B. $0.3,0.4,0.03,0.33$
C. $0.03,0.3,0.4,0.33$
D. $0.03,0.3,0.33,0.4$
22. Which of the following sets of decimals is in or der from greatest to least?
A. $0.89,0.9,0.08,0.8$
B. $0.9,0.89,0.8,0.08$,
C. $0.08,0.8,0.89,0.9$
D. $0.9,0.8,0.08,0.89$

Fractions Assessment - Page 4

23. Margo and Carlos shared a box of cookies. Margo ate $\frac{1}{5}$ of the box and Carlos ate $\frac{2}{5}$ of the box. What fraction of the cookies did they eat altogether?
A. $\frac{1}{5}$ of the cookies
B. $\frac{3}{5}$ of the cookies
C. $\frac{4}{5}$ of the cookies
D. $\frac{3}{10}$ of the cookies
4.NF. 3
24. Rhonda has $\frac{3}{4}$ of her book left to read. If she reads another $\frac{1}{4}$ of the book, then how much will she have left to read?
A. $\frac{1}{4}$ of the book
B. $\frac{5}{8}$ of the book
C. $\frac{2}{4}$ of the book
D. $\frac{4}{8}$ of the book
4.NF. 3
25. Chris made raspberry lemonade for his classroom party. He combined $2 \frac{3}{10}$ cups of lemonade with $\left\lvert\, \frac{1}{10}\right.$ cups of raspberry juice. How much raspberry lemonade did he make?
A. $2 \frac{2}{10}$ cups
B. $3 \frac{2}{10}$ cups.
C. $2 \frac{4}{10}$ cups
D. $3 \frac{4}{10}$ cups
4.NF. 3
26. Jordan and Emily made beaded necklaces to give to their mothers. Jordan's necklace was $5 \frac{1}{3}$ inches long and Emily's necklace was $\boldsymbol{\sigma} \frac{2}{3}$ inches long. How much longer was Emily's necklace than Jordan's?
A. $\frac{2}{3}$ inches
C. $\left\lvert\, \frac{1}{3}\right.$ inches
B. || $\frac{2}{3}$ inches
D. || $\frac{3}{6}$ inches
4.NF. 3
27. While making pasta, Roger pours water into a pot using a measuring cup that holds $\frac{3}{4}$ of a cup of water. He pours in 6 full measuring cups into the pot. How much water does Roger use to make his pasta?
A. $\frac{8}{4}$ cups
B. $\frac{9}{4}$ cups
C. $\frac{18}{4}$ cups
D. $\frac{9}{10}$ cups
28. Elizabeth hikes $\frac{2}{3}$ of a mile every day for one week. How many total miles does Elizabeth hike by the end of the week?
A. $\frac{14}{3}$ miles
B. $\frac{14}{21}$ miles
C. $\frac{7}{3}$ miles
D. $\frac{9}{3}$ miles
4.NF. 4

Name: \qquad Date: \qquad Score: \qquad

Fractions Assessment

1. Use the diagram below to tell which fraction is equivalent to $\frac{3}{4}$?

A. $\frac{9}{10}$
C. $\frac{6}{12}$
B. $\frac{6}{8}$
(D.) $\frac{9}{12}$
4.NF. 1
2. Which of the following is NOT equivalent to $\frac{3}{6}$?
A. $\frac{1}{2}$
(C.) $\frac{5}{8}$
B. $\frac{2}{4}$
D. $\frac{5}{10}$
4.NF. 1
3. When comparing $\frac{2}{3}$ and $\frac{3}{4}$, which of the following shows the fractions written correctly and compared with common denominators?
A. $\frac{8}{12}>\frac{9}{12}$
(B.) $\frac{8}{12}<\frac{9}{12}$
C. $\frac{6}{12}<\frac{8}{12}$
D. $\frac{9}{12}>\frac{6}{12}$
4. Which of the following shows an accurate comparison?
A. $\frac{1}{4}>\frac{1}{2}$
C. $\frac{3}{10}>\frac{7}{8}$
(B.) $\frac{5}{6}>\frac{2}{3}$
D. $\frac{3}{8}>\frac{2}{3}$
4.NF. 2
5. Which of the following sets of fractions is in order from least to greatest?
A. $\frac{5}{6} \quad \frac{2}{3} \quad \frac{1}{4} \quad \frac{1}{2}$
B. $\frac{2}{3} \frac{1}{4} \frac{1}{2} \frac{5}{6}$
C. $\frac{1}{2} \quad \frac{1}{4} \quad \frac{5}{6} \quad \frac{2}{3}$
(D.) $\frac{1}{4} \frac{1}{2} \frac{2}{3} \frac{5}{6}$
6. Which of the following sets of fractions is in order from greatest to least?
$\begin{array}{lllll}\text { A. } & \frac{9}{12} & \frac{5}{8} & \frac{5}{10} & \frac{2}{6} \\ \text { B. } & \frac{5}{10} & \frac{2}{6} & \frac{5}{8} & \frac{9}{12}\end{array}$
C. $\frac{2}{6} \quad \frac{5}{8} \quad \frac{9}{12} \quad \frac{5}{10}$
D. $\frac{2}{6} \quad \frac{5}{10} \quad \frac{9}{12} \quad \frac{5}{8}$

Answer Key
Fractions Assessment - Page 2
7. Which of the following is NOT an example of $\frac{5}{8}$ decomposed?
A. $\frac{3}{8}+\frac{2}{8}$
B. $\frac{2}{8}+\frac{2}{8}+\frac{1}{8}$
C. $\frac{4}{8}+\frac{2}{8}$
D. $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{2}{8}$
8. Which of the following shows a fraction accurately decomposed?
A. $\frac{2}{5}+\frac{2}{5}=\frac{5}{5}$
(B.) $\frac{1}{5}+\frac{1}{5}+\frac{2}{5}=\frac{4}{5}$
C. $\frac{4}{8}+\frac{3}{8}=\frac{6}{8}$
D. $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{4}{8}$
9. What is the sum of $\frac{2}{10}$ and $\frac{5}{10}$?
A. $\frac{8}{10}$
C. $\frac{6}{10}$
(B.) $\frac{7}{10}$
D. $\frac{7}{8}$
10. Find the difference:

$$
\frac{5}{6}-\frac{2}{6}
$$

A. $\frac{2}{6}$
(C.) $\frac{3}{6}$
B. $\frac{2}{5}$
D. $\frac{3}{5}$
11. What is the sum of $2 \frac{3}{8}$ and $1 \frac{2}{8}$?
A. $3^{\frac{4}{8}}$
C. $3^{\frac{5}{8}}$
B. $2 \frac{2}{8}$
D. $2^{\frac{1}{8}}$
4.NF. 3
12. Find the sum:

$$
\frac{5}{10}+\frac{30}{100}
$$

A. $\frac{8}{100}$
C. $\frac{20}{100}$
(B.) $\frac{8}{10}$
D. $\frac{2}{10}$
4.NF. 5
13. Find the difference:

$$
5 \frac{8}{0}-2 \frac{5}{0}
$$

A. $2 \frac{5}{10}$
C. $2 \frac{3}{10}$
(B.) $3 \frac{3}{10}$
D. $3 \frac{5}{10}$
4.NF. 3
14. Find the product:

$$
7 \times \frac{1}{4}
$$

A. $\frac{8}{4}$
C. $\frac{7}{2}$
B. $\frac{7}{8}$
(D. $\frac{7}{4}$
4.NF. 4
15. Find the product:

$$
3 \times \frac{3}{4}
$$

(A. $\frac{9}{4}$
C. $\frac{9}{2}$
B. $\frac{9}{8}$
D. $\frac{6}{4}$

Fractions Assessment - Page 3

16. Which decimal is represented by the following model?

A. 0.54
(C.) 0.55
B. 5.4
D. 5.5
17. Which of the following is NOT an example of an equivalent fraction and decimal?
A. $0.8=\frac{8}{10}$
B. $0.2=\frac{2}{100}$
C. $0.28=\frac{28}{100}$
D. $0.82=\frac{82}{100}$
4.NF. 6
18. Which of the following shows seven tenths as a decimal and a fraction?
A. $0.07, \frac{7}{10}$$0.7, \frac{7}{10}$
B. $0.07, \frac{7}{100}$
D. $0.7, \frac{7}{100}$
19. Which of the following shows fifty-four hundredths as a decimal and a fraction?
A. $0.54, \frac{54}{10}$
C. $5.4, \frac{54}{10}$
(B.) $0.54, \frac{54}{100}$
D. $5.4, \frac{54}{100}$
4.NF. 6
20. Which of the following shows an accurate comparison?
A. $0.5<0.05$
C. $0.55<0.50$
$\begin{array}{ll}\text { B. } 0.5>0.05 & \text { D. } 0.55<0.05\end{array}$
4.NF. 7
21. Which of the following sets of decimals is in or der from least to greatest?
A. $0.33,0.3,0.03,0.4$
B. $0.3,0.4,0.03,0.33$
C. $0.03,0.3,0.4,0.33$
(D.) $0.03,0.3,0.33,0.4$
22. Which of the following sets of decimals is in or der from greatest to least?
A. $0.89,0.9,0.08,0.8$
(B.) $0.9,0.89,0.8,0.08$,
C. $0.08,0.8,0.89,0.9$
D. $0.9,0.8,0.08,0.89$

Fractions Assessment - Page 4

23. Margo and Carlos shared a box of cookies. Margo ate $\frac{1}{5}$ of the box and Carlos ate $\frac{2}{5}$ of the box. What fraction of the cookies did they eat altogether?
A. $\frac{1}{5}$ of the cookies
B. $\frac{3}{5}$ of the cookies
C. $\frac{4}{5}$ of the cookies
D. $\frac{3}{10}$ of the cookies
4.NF. 3
24. Rhonda has $\frac{3}{4}$ of her book left to read. If she reads another $\frac{1}{4}$ of the book, then how much will she have left to read?
A. $\frac{1}{4}$ of the book
B. $\frac{5}{8}$ of the book
C. $\frac{2}{4}$ of the book
D. $\frac{4}{8}$ of the book
25. Chris made raspberry lemonade for his classroom party. He combined $2 \frac{3}{10}$ cups of lemonade with $\left\lvert\, \frac{1}{10}\right.$ cups of raspberry juice. How much raspberry lemonade did he make?
A. $2 \frac{2}{10}$ cups
C. $2 \frac{4}{10}$ cups
B. $3 \frac{2}{10}$ cups.
(1)3 ${ }^{4}$
cups
4.NF. 3
26. Jordan and Emily made beaded necklaces to give to their mothers. Jordan's necklace was $5 \frac{1}{3}$ inches long and Emily's necklace was $\boldsymbol{\sigma} \frac{2}{3}$ inches long. How much longer was Emily's necklace than Jordan's?
A. $\frac{2}{3}$ inches
C. $\frac{1}{3}$ inches
B. || $\frac{2}{3}$ inches
D. || $\frac{3}{6}$ inches
27. While making pasta, Roger pours water into a pot using a measuring cup that holds $\frac{3}{4}$ of a cup of water. He pours in 6 full measuring cups into the pot. How much water does Roger use to make his pasta?
A. $\frac{8}{4}$ cups
B. $\frac{9}{4}$ cups
C. $\frac{18}{4}$ cups
D. $\frac{9}{10}$ cups
28. Elizabeth hikes $\frac{2}{3}$ of a mile every day for one week. How many total miles does Elizabeth hike by the end of the week?
A. $\frac{14}{3}$ miles
B. $\frac{14}{21}$ miles
C. $\frac{7}{3}$ miles
D. $\frac{9}{3}$ miles
4.NF. 4

Thank you so much for purchasing this product. If you have any qृuestions or comments, please feel free to email me at rjıyoung23@gmail.com Copyright © Rebecaa Rojas 2013 all rights reserved by the author. Permission Ło copy for classroom use only.

a

[^0]: TOTAL PAGES: 19

